首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expression of neuropilin-1 (NRP1), a recently described VEGF and semaphorin receptor expressed by endothelial cells (EC) but some non-EC types as well, was analyzed in osteoblasts in vitro and in vivo. Cultured MC3T3-E1 osteoblasts expressed NRP1 mRNA and bound VEGF(165) but not VEGF(121), characteristic of the VEGF isoform-specific binding of NRP1. These cells did not express VEGFR-1 or VEGFR-2 so that VEGF binding to osteoblasts was strictly NRP1-dependent. In a chick osteocyte differentiation system, NRP1 was expressed by osteoblasts but its expression was absent as the cells matured into osteocytes. Immunohistochemical localization of NRP1 within the developing bones of 36-day-old mice and embryonic Day 17 chicks demonstrated that NRP1 was expressed by osteoblasts migrating alongside invading blood vessels within the metaphysis of the growth plate, as well as by osteoblasts at the developing edge of trabeculae within the marrow cavity. On the other hand, NRP1 was not expressed by osteocytes in either species, consistent with the in vitro results. In addition to osteogenic cells, NRP1 expression by EC was observed throughout the bone. Together these results suggest that NRP1 might have a dual function in bone by mediating osteoblast function directly as well as angiogenesis.  相似文献   

2.
Fluid flowing through the bone porosity might be a primary stimulus for functional adaptation of bone. Osteoblasts, and osteocytes in particular, respond to fluid flow in vitro with enhanced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) release; both of these signaling molecules mediate mechanically-induced bone formation. Because the cell cytoskeleton is involved in signal transduction, we hypothesized that the pulsatile fluid flow-induced release of NO and PGE(2) in both osteoblastic and osteocytic cells involves the actin and microtubule cytoskeleton. In testing this hypothesis we found that fluid flow-induced NO response in osteoblasts was accompanied by parallel alignment of stress fibers, whereas PGE(2) response was related to fluid flow stimulation of focal adhesions formed after cytoskeletal disruption. Fluid flow-induced PGE(2) response in osteocytes was inhibited by cytoskeletal disruption, whereas in osteoblasts it was enhanced. These opposite PGE(2) responses are likely related to differences in cytoskeletal composition (osteocyte structure was more dependent on actin), but may occur via cytoskeletal modulation of shear/stretch-sensitive ion channels that are known to be dominant in osteocyte (and not osteoblast) response to mechanical loading.  相似文献   

3.
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2(+/+) and Pyk2(-/-) primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2(+/+) and Pyk2(-/-) osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK(-/-) osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts.  相似文献   

4.
Fu Q  Wu C  Shen Y  Zheng S  Chen R 《Journal of biomechanics》2008,41(15):3225-3228
The biomechanical characteristics of bone tissue and its cells under mechanical stress are significant for bone biomechanics research, but the mechanism of mechanotransduction is still unknown. It has been established that the actin cytoskeleton of osteoblasts plays an important role in this process. However, the structure of the actin cytoskeleton is reorganized when loaded with mechanical stress, which results in changes in cell stiffness. These phenomena suggest that an actin-cytoskeleton-induced feedback regulation mechanism may be involved in the mechanotransduction of osteoblasts, but this has not yet been proven. The aim of this study was to explore the role of LIMK2 in the reorganization of the actin cytoskeleton induced by fluid shear stress in osteoblasts by using RNA interference. Balb/c mouse primary osteoblasts were divided into four groups. Cells in Groups 1 and 3 were transfected with negative control RNA, while cells in Groups 2 and 4 were transfected with a specific siRNA designed to silence the LIMK2 gene. Twenty-four hours after transfection, cells in Groups 1 and 2 were loaded with fluid shear stress at 12 dyne/cm2 while cells in Groups 3 and 4 were not. Compared with Group 1, the mean fluorescence density of the actin cytoskeleton in the other three groups was 28.9%, 45.7%, and 33.0%, respectively. These results indicate that LIMK2 plays an important role in the reorganization of the actin cytoskeleton induced by fluid shear stress.  相似文献   

5.
Mechanical stimulation of bone induces new bone formation invivo and increases the metabolic activity and gene expression ofosteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission ofmechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts causedreorganization of actin filaments into contractile stress fibers andinvolved recruitment of1-integrins and -actinin tofocal adhesions. Fluid shear also increased expression of two proteinslinked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and theearly response gene product c-fos. Inhibition of actin stress fiberdevelopment by treatment of cells with cytochalasin D, by expression ofa dominant negative form of the small GTPase Rho, or by microinjectioninto cells of a proteolytic fragment of -actinin that inhibits-actinin-mediated anchoring of actin filaments to integrins at theplasma membrane each blocked fluid-shear-induced gene expression inosteoblasts. We conclude that fluid shear-induced mechanical signalingin osteoblasts leads to increased expression of COX-2 and c-Fos througha mechanism that involves reorganization of the actin cytoskeleton.Thus Rho-mediated stress fiber formation and the -actinin-dependentanchorage of stress fibers to integrins in focal adhesions may promotefluid shear-induced metabolic changes in bone cells.

  相似文献   

6.
Vascular endothelial growth factor (VEGF)-D is a member of the VEGF family of angiogenic growth factors that recognizes and activates the vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 on blood and/or lymphatic vessels. We show that in the long bones of newborn mice, VEGF-D and VEGFR-3 are expressed in the osteoblasts of the growing plate. The treatment of primary human osteoblasts with recombinant VEGF-D induces the expression of osteocalcin and the formation of mineralized nodules in a dose-dependent manner. A monoclonal neutralizing antibody, anti-VEGF-D, or silencing of VEGFR-3 by lentiviral-mediated expression of VEGFR-3 small hairpin RNA affects VEGF-D-dependent osteocalcin expression and nodule formation. Moreover, in primary human osteoblasts, VEGF-D expression is under the control of VEGF, and inhibition of VEGF-D/VEGFR-3 signaling, by monoclonal antibodies or VEGFR-3 silencing, affects VEGF-dependent osteoblast differentiation. These experiments establish that VEGF-D/VEGFR-3 signaling plays a critical role in osteoblast maturation and suggest that VEGF-D is a downstream effector of VEGF in osteogenesis.  相似文献   

7.
A healthy skeleton relies on bone''s ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.  相似文献   

8.
Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.  相似文献   

9.
Angiogenesis is a multistep complex phenomenon critical for several inflammatory and neoplastic disorders. Basophils, normally confined to peripheral blood, can infiltrate the sites of chronic inflammation. In an attempt to obtain insights into the mechanism(s) underlying human basophil chemotaxis and its role in inflammation, we have characterized the expression and function of vascular endothelial growth factors (VEGFs) and their receptors in these cells. Basophils express mRNA for three isoforms of VEGF-A (121, 165, and 189) and two isoforms of VEGF-B (167 and 186). Peripheral blood and basophils in nasal polyps contain VEGF-A localized in secretory granules. The concentration of VEGF-A in basophils was 144.4 +/- 10.8 pg/10(6) cells. Immunologic activation of basophils induced the release of VEGF-A. VEGF-A (10-500 ng/ml) induced basophil chemotaxis. Supernatants of activated basophils induced an angiogenic response in the chick embryo chorioallantoic membrane that was inhibited by an anti-VEGF-A Ab. The tyrosine kinase VEGFR-2 (VEGFR-2/KDR) mRNA was expressed in basophils. These cells also expressed mRNA for the soluble form of VEGFR-1 and neuropilin (NRP)1 and NRP2. Flow cytometric analysis indicated that basophils express epitopes recognized by mAbs against the extracellular domains of VEGFR-2, NRP1, and NRP2. Our data suggest that basophils could play a role in angiogenesis and inflammation through the expression of several forms of VEGF and their receptors.  相似文献   

10.
Targeted remodeling is activated by fatigue microcracks and plays an important role in maintaining bone integrity. It is widely believed that fluid flow-induced shear stress plays a major role in modulating the mechanotransduction process. Therefore, it is likely that fluid flow-induced shear stress plays a major role in the initiation of the repair of fatigue damage. Since no in vivo measurements of fluid flow within bone exist, computational and mathematical models must be employed to investigate the fluid flow field and the shear stress occurring within cortical bone. We developed a computational fluid dynamic model of cortical bone to examine the effect of a fatigue microcrack on the fluid flow field. Our results indicate that there are alterations in the fluid flow field as far as 150 microm away from the crack, and that at distances farther than this, the fluid flow field is similar to the fluid flow field of intact bone. Through the crack and immediately above and below it, the fluid velocity is higher, while at the lateral edges it is lower than that calculated for the intact model, with a maximum change of 29%. Our results suggest that the presence of a fatigue microcrack can alter the shear stress in regions near the crack. These alterations in shear stress have the potential to significantly alter mechanotransduction and may play a role in the initiation of the repair of fatigue microcracks.  相似文献   

11.
Mechanical loads are required for optimal bone mass. One mechanism whereby mechanical loads are transduced into localized cellular signals is strain-induced fluid flow through lacunae and canaliculi of bone. Gap junctions (GJs) between osteocytes and osteoblasts provides a mechanism whereby flow-induced signals are detected by osteocytes and transduced to osteoblasts. We have demonstrated the importance of GJ and gap junctional intercellular communication (GJIC) in intracellular calcium and prostaglandin E(2) (PGE(2)) increases in response to flow. Unapposed connexons, or hemichannels, are themselves functional and may constitute a novel mechanotransduction mechanism. Using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes, we examined the time course and mechanism of hemichannel activation in response to fluid flow, the composition of the hemichannels, and the role of hemichannels in flow-induced ATP release. We demonstrate that fluid flow activates hemichannels in MLO-Y4, but not MC3T3-E1, through a mechanism involving protein kinase C, which induces ATP and PGE(2) release.  相似文献   

12.
We have shown that in the osteopetrotic rat mutation toothless (tl) osteoblasts are absent from older bone surfaces in mutants and that mutant osteoblasts in vivo lack the prominent stress fiber bundles polarized along bone surfaces in osteoblasts from normal littermates. Our recent data demonstrate that in normal osteoblasts in vitro beta- and gamma-actin mRNAs have different, characteristic intracellular distributions and that tl (mutant) osteoblasts fail to differentially sort these mRNAs. Because bone resorption and formation are highly interdependent and injections of CSF-1, a growth factor, increase bone resorption and growth in tl rats, we examined the effects of CSF-1 treatment on osteoblast survival and ultrastructure in vivo and ability to sort actin mRNAs in vitro. Neonatal CSF-1 treatment of mutants restores osteoblasts on older bone surfaces, normalizes the intracellular distribution of stress fibers in osteoblasts in vivo and promotes normal sorting of beta-actin mRNA in mutant osteoblasts in vitro without normalizing gamma-actin distribution. These data suggest the beta- and gamma-actin mRNAs in osteoblasts are sorted by different mechanisms and that the differential sorting of beta-actin mRNA is related to the characteristic polarization of stress fibers in osteoblasts and their survival on bone surfaces. This experimental system can be used to explore the relationships and regulation of these aspects of cell and tissue biology.  相似文献   

13.
Mechanical loading of bone is important for the structural integrity of the skeleton and the maintenance of bone mass. Mechanically loading bone generates fluid shear stress (FSS) across the surface of bone cells resulting in the induction of cyclooxygenase-2 (COX-2) and release of prostaglandins, both of which are necessary for mechanically induced bone formation. However, the mechanisms by which cells transduce FSS-induced signals across the membrane and into the cell remain poorly understood. Focal adhesions, which are specialized sites of attachment between cells and the extracellular matrix, play a role in signal transduction and have been proposed to function as mechanosensors. To directly test whether focal adhesions mediate mechanotransduction in bone cells, we inhibited the formation of focal adhesions by 1). culturing MC3T3-E1 osteoblasts on bovine serum albumin (BSA), which does not contain integrin binding sites or by 2). treating cells cultured on fibronectin with soluble Arg-Gly-Asp-Ser (RGDS) peptide to specifically block integrin-fibronectin interactions. We then subjected the cells to FSS and measured COX-2 induction and PGE(2) release. Both COX-2 induction and PGE(2) release in response to FSS were significantly decreased when osteoblasts were treated with soluble RGDS peptide compared with controls. However, RGDS peptide treatment did not affect FSS-induced ERK phosphorylation. Interestingly, osteoblasts cultured on BSA to suppress focal adhesion formation secreted fibronectin and increased focal adhesion formation over time, which correlated with the induction of COX-2 in response to FSS. Together, these results suggest that fibronectin-induced formation of focal adhesions promotes FSS-induced PGE(2) release and upregulation of COX-2 protein.  相似文献   

14.
15.
The process of mechanotransduction of bone, the conversion of a mechanical stimulus into a biochemical response, is known to occur in osteoblasts in response to fluid shear stress. In order to understand the reaction of osteoblasts to various times of flow perfusion, osteoblasts were seeded on three-dimensional scaffolds, and cultured in the following conditions: continuous flow perfusion, intermittent flow perfusion, and static condition. We collected samples on day 4, 8 and 12 for analysis. Osteoblast proliferation was demonstrated by cell proliferation and scanning electron microscopy assay. Additionally, the expression of known markers of differentiation, including alkaline phosphatase and osteocalcin, were tested by qRT-PCR and alkaline phosphatase activity assay, and the deposition of calcium was used as an indicator of mineralization demonstrated by calcium content assay. The results supported that low fluid shear stress plays an important role in the activation of osteoblasts: enhance cell proliferation, increase calcium deposition, and promote the expression of osteoblastic markers. Furthermore, the continuous flow perfusion is a more favorable environment for the initiation of osteoblast activity compared with intermittent flow perfusion. Therefore, the force and time of fluid shear stress are important parameters for osteoblast activation.  相似文献   

16.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

17.
Osteocytes are the most abundant osteoblast lineage cells within the bone matrix. They respond to mechanical stimulation and can participate in the release of regulatory proteins that can modulate the activity of other bone cells. We hypothesize that neuropeptide Y (NPY), a neurotransmitter with regulatory functions in bone formation, is produced by osteocytes and can affect osteoblast activity. To study the expression of NPY by the osteoblast lineage cells, we utilized transgenic mouse models in which we can identify and isolate populations of osteoblasts and osteocytes. The Col2.3GFP transgene is active in osteoblasts and osteocytes, while the DMP1 promoter drives green fluorescent protein (GFP) expression in osteocytes. Real‐time PCR analysis of RNA from the isolated populations of cells derived from neonatal calvaria showed higher NPY mRNA in the preosteocytes/osteocytes fraction compared to osteoblasts. NPY immunostaining confirmed the strong expression of NPY in osteocytes (DMP1GFP+), and lower levels in osteoblasts. In addition, the presence of NPY receptor Y1 mRNA was detected in cavaria and long bone, as well as in primary calvarial osteoblast cultures, whereas Y2 mRNA was restricted to the brain. Furthermore, NPY expression was reduced by 30–40% in primary calvarial cultures when subjected to fluid shear stress. In addition, treatment of mouse calvarial osteoblasts with exogenous NPY showed a reduction in the levels of intracellular cAMP and markers of osteoblast differentiation (osteocalcin, BSP, and DMP1). These results highlight the potential regulation of osteoblast lineage differentiation by local NPY signaling. J. Cell. Biochem. 108: 621–630, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The two main types of mechanical stimuli used in cellular-level bone mechanotransduction studies are substrate strain and flow-induced shear stress. A subset of studies has investigated which of these stimuli induces the primary mechanotransduction effect on bone cells. The shortcomings of these experiments are twofold. First, in some experiments the magnitude of one loading type is able to be quantitatively measured while the other loading mode is only estimated. Second, the two loading modes are compared using different bioreactors, representing different cellular environments and substrates to which the cells are attached. In addition, none of these studies utilized bioreactors which apply controlled magnitudes of substrate strain and flow-induced shear stress differentially and simultaneously. This study presents the design of a multimodal loading device which can apply substrate stretch and fluid flow simultaneously while allowing for real-time cell imaging. The mechanical performance of the bioreactor is validated in this study by correlating the output levels of flow-induced shear stress and substrate strain with the input levels of displacement and displacement rate. The magnitudes of cross-talk loading (i.e. flow-induced strain, and strain-induced fluid flow) are also characterized and shown to be magnitudes lower than physiological levels of loading estimated to occur in bone in vivo.  相似文献   

19.
Osteoblast interactions with extracellular matrix (ECM) proteins are known to influence many cell functions, which may ultimately affect osseointegration of implants with the host bone tissue. Some adhesion-mediated events include activation of focal adhesion kinase, and subsequent changes in the cytoskeleton and cell morphology, which may lead to changes in adhesion strength and cell responsiveness to mechanical stimuli. In this study we examined focal adhesion kinase activation (FAK), F-actin cytoskeleton reorganization, adhesion strength, and osteoblast responsiveness to fluid shear when adhered to type I collagen (ColI), glass, poly-L-lysine (PLL), fibronectin (FN), vitronectin (VN), and serum (FBS). In general, surfaces that bind cells through integrins (FN, VN, FBS) elicited the highest adhesion strength, FAK activation, and F-actin stress fiber formation after both 15 and 60 minutes of adhesion. In contrast, cells attached through non-integrin mediated means (PLL, glass) showed the lowest FAK activation, adhesion strength, and little F-actin stress fiber formation. When subjected to steady fluid shear using a parallel plate flow chamber, osteoblasts plated on FN released significantly more PGE2 compared to those on glass. In contrast, PGE2 release of osteoblasts attached to FN or glass was not different in the absence of fluid shear, suggesting that differences in binding alone are insufficient to alter PGE2 secretion. The increased adhesion strength as well as PGE2 secretion of osteoblasts adhered via integrins may be due to increased F-actin fiber formation, which leads to increased cell stiffness.  相似文献   

20.
Maintenance of optimal bone physiology requires the coordinated activity of osteoclasts that resorb old bone and osteoblasts that deposit new bone. Mechanical loading of bone and the resulting movement of interstitial fluid within the spaces surrounding bone cells is thought to play a key role is maintaining optimal bone mass. One way in which fluid movement may promote bone formation is by enhancing osteoblast survival. We have shown previously that application of fluid flow to osteoblasts in vitro confers a protective effect by inhibiting osteoblast apoptosis (Pavalko et al., 2003, J. Cell Physiol., 194: 194-205). To investigate the cellular mechanisms that regulate the response of osteoblasts to fluid shear stress, we have examined the possible interaction between fluid flow and growth factors in MC3T3-E1 osteoblast-like cells. We found that insulin-like growth factor-I (IGF-I) was significantly more effective at preventing TNF-alpha-induced apoptosis when cells were first subjected to mechanical loading by exposure to either unidirectional or oscillatory fluid flow compared to cells that were maintained in static culture. Additionally, downstream signaling in response to treatment with IGF-I, including ERK and Akt activation, was enhanced in cells that were subjected to fluid flow, compared to cells maintained in static culture. Furthermore, we found that PKC activity is essential for fluid shear stress sensitization of IGF-IR, since a specific inhibitor of PCKzeta function blocked the flow-enhanced IGF-I-activated Akt and ERK phosphorylation. Together, our results suggest that fluid shear stress may regulate IGF-I signaling in osteoblasts in a PKC-zeta-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号