首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions.  相似文献   

2.
Eukaryotic chromosomes possess multiple origins of replication, whereas bacterial chromosomes are replicated from a single origin. The archaeon Pyrococcus abyssi also appears to have a single origin, suggesting a common rule for prokaryotes. However, in the current work, we describe the identification of two active origins of replication in the single chromosome of the hyperthermophilic archaeon Sulfolobus solfataricus. Further, we identify conserved sequence motifs within the origins that are recognized by a family of three Sulfolobus proteins that are homologous to the eukaryotic initiator proteins Orc1 and Cdc6. We demonstrate that the two origins are recognized by distinct subsets of these Orc1/Cdc6 homologs. These data, in conjunction with an analysis of the levels of the three Orc1/Cdc6 proteins in different growth phases and cell cycle stages, lead us to propose a model for the roles for these proteins in modulating origin activity.  相似文献   

3.
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.  相似文献   

4.
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts—Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe—also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10−8, which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms.  相似文献   

5.
DNA replication in eukaryotes is considered to proceed according to a precise program in which each chromosomal region is duplicated in a defined temporal order. However, recent studies reveal an intrinsic temporal disorder in the replication of yeast chromosome VI. Here we provide a model of the chromosomal duplication to study the temporal sequence of origin activation in budding yeast. The model comprises four parameters that influence the DNA replication system: the lengths of the chromosomes, the explicit chromosomal positions for all replication origins as well as their distinct initiation times and the replication fork migration rate. The designed model is able to reproduce the available experimental data in form of replication profiles. The dynamics of DNA replication was monitored during simulations of wild type and randomly perturbed replication conditions. Severe loss of origin function showed only little influence on the replication dynamics, so systematic deletions of origins (or loss of efficiency) were simulated to provide predictions to be tested experimentally. The simulations provide new insights into the complex system of DNA replication, showing that the system is robust to perturbation, and giving hints about the influence of a possible disordered firing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Epigenetic regulation exerts a major influence on origins of DNA replication during development. The mechanisms for this regulation, however, are poorly defined. We showed previously that acetylation of nucleosomes regulates the origins that mediate developmental gene amplification during Drosophila oogenesis. Here we show that developmental activation of these origins is associated with acetylation of multiple histone lysines. Although these modifications are not unique to origin loci, we find that the level of acetylation is higher at the active origins and quantitatively correlated with the number of times these origins initiate replication. All of these acetylation marks were developmentally dynamic, rapidly increasing with origin activation and rapidly declining when the origins shut off and neighboring promoters turn on. Fine-scale analysis of the origins revealed that both hyperacetylation of nucleosomes and binding of the origin recognition complex (ORC) occur in a broad domain and that acetylation is highest on nucleosomes adjacent to one side of the major site of replication initiation. It was surprising to find that acetylation of some lysines depends on binding of ORC to the origin, suggesting that multiple histone acetyltransferases may be recruited during origin licensing. Our results reveal new insights into the origin epigenetic landscape and lead us to propose a chromatin switch model to explain the coordination of origin and promoter activity during development.  相似文献   

7.
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.  相似文献   

8.
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time.  相似文献   

9.
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.  相似文献   

10.
The plasmid R6K contains three distinct origins of replication: alpha, beta, and gamma. The gamma sequence is essential in cis and acts as an enhancer that activates the distant alpha and beta origins. R6K therefore represents a favorable procaryotic model system with which to unravel the biochemical mechanisms underlying selective origin activation, particularly activation involving distant sites on the same chromosome. We have discovered that plasmids containing the origins alpha and gamma required the Escherichia coli DnaA initiator protein in addition to the R6K-encoded initiator protein, Pi, and other host replisomal proteins for their maintenance in vivo. Plasmids initiating replication from origin beta required only the Pi initiator protein and other host replisomal proteins. We have exploited the differential requirement for the DnaA protein by origins gamma and beta to selectively study and localize the minimal origin beta sequences by deletion analysis as one test of a looping model of origin activation. A 64-bp region spanning the extreme -COOH terminal coding sequence of the Pi protein was found to be essential for replication in vivo in the absence of DnaA protein, consistent with the approximate physical location of the beta origin. Replication emanating from origin beta could be abolished in vivo by deletion of the 9-bp target site for Pi protein-mediated DNA looping between the gamma origin/enhancer and the distant beta origin. Electron microscopy of nascent replication intermediates generated in vivo directly confirmed our genetic localization of the beta origin. Our results strongly suggest that activation of the beta origin by a distant replication enhancer element requires a small target sequence essential for initiator protein-mediated DNA looping.  相似文献   

11.
The spatio-temporal organization of chromosomal DNA replication was analyzed using a model based on a "DNA unit" (or decondensation unit) hypothesis. The model is an extension of the fork movement theory of Huberman & Riggs (1968) and can account for a partially deterministic and partially stochastic order of DNA replication in chromosomes. It presumes that each chromosome is composed of DNA units that are arranged in sequence and that are replicated in parallel. A deterministic wave of chromatin decondensation propagates along the DNA unit continuously and progressively providing a field for the random activation of replication origin. Assignment of replication times to DNA compartments by a Monte Carlo method was programmed based on the model and the program was used to stimulate DNA synthesis rate curves that can be measured by the method of Dolbeare et al. (1983, 1985). The shape of the curve is shown to constrain possible parameter values of the model, which include the rate of fork movement, the fraction of chromatin that is decondensed at the start of S-phase, the initial number of origins activated, the rate at which new origins are activated, etc. The chromosomal organization that controls the molecular level of DNA replication is briefly reviewed and its relevance to the model is also discussed.  相似文献   

12.
The mioC gene, which neighbors the chromosomal origin of replication (oriC) in Escherichia coli, has in a number of studies been implicated in the control of oriC initiation on minichromosomes. The present work reports on the construction of cells carrying different mioC mutations on the chromosome itself. Flow cytometry was employed to study the DNA replication control and growth pattern of the resulting mioC mutants. All parameters measured (growth rate, cell size, DNA/cell, number of origins per cell, timing of initiation) were the same for the wild type and all the mioC mutant cells under steady state growth and after different shifts in growth medium and after induction of the stringent response. It may be concluded that the dramatic effects of mioC mutations reported for minichromosomes are not observed for chromosomal replication and that the mioC gene and gene product is of little importance for the control of initiation. The data demonstrate that a minichromosome is not necessarily a valid model for chromosomal replication.  相似文献   

13.
Replication origins are ‘licensed' for a single initiation event before entry into S phase; however, many licensed replication origins are not used, but instead remain dormant. The use of these dormant origins helps cells to survive replication stresses that block replication fork movement. Here, we present a computer model of the replication of a typical metazoan origin cluster in which origins are assigned a certain initiation probability per unit time and are then activated stochastically during S phase. The output of this model is in good agreement with experimental data and shows how inefficient dormant origins can be activated when replication forks are inhibited. The model also shows how dormant origins can allow replication to complete even if some forks stall irreversibly. This provides a simple explanation for how replication origin firing is regulated, which simultaneously provides protection against replicative stress while minimizing the cost of using large numbers of replication forks.  相似文献   

14.
Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.  相似文献   

15.
The homeostatic system that sets the copy number, and corrects over-replication and under-replication, seems to be different for chromosomes and plasmids in bacteria. Whereas plasmid replication is random in time, chromosome replication is tightly coordinated with the cell cycle such that all origins are initiated synchronously at the same cell mass per origin once per cell cycle. In this review, we propose that despite their apparent differences, the copy-number control of the Escherichia coli chromosome is similar to that of plasmids. The basic mechanism that is shared by both systems is negative-feedback control of the availability of a protein or RNA positive initiator. Superimposed on this basic mechanism are at least three systems that secure the synchronous initiation of multiple origins; however, these mechanisms are not essential for maintaining the copy number.  相似文献   

16.
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome‐wide studies in vertebrates have recently identified a consensus G‐rich motif potentially able to form G‐quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200‐bp cis‐regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation.  相似文献   

17.
Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency.  相似文献   

18.
Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins (origins). In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unknown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that these deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism.  相似文献   

19.
20.
The effect on chromosome stability of deleting replication origins.   总被引:23,自引:11,他引:12       下载免费PDF全文
The observed spacing between chromosomal DNA replication origins in Saccharomyces cerevisiae is at least four times shorter than should be necessary to ensure complete replication of chromosomal DNA during the S phase. To test whether all replication origins are required for normal chromosome stability, the loss rates of derivatives of chromosome III from which one or more origins had been deleted were measured. In the case of a 61-kb circular derivative of the chromosome that has two highly active origins and one origin that initiates only 10 to 20% of the time, deletion of either highly active origin increased its rate of loss two- to fourfold. Deletion of both highly active origins caused the ring chromosome to be lost in approximately 20% of cell divisions. This very high rate of loss demonstrates that there are no efficient cryptic origins on the ring chromosome that are capable of ensuring its replication in the absence of the origins that are normally used. Deletion of the same two origins from the full-length chromosome III, which contains more than six replication origins, had no effect on its rate of loss. These results suggest that the increase in the rate of loss of the small circular chromosome from which a single highly active origin was deleted was caused by the failure of the remaining highly active origin to initiate replication in a small fraction (approximately 0.003) of cell cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号