首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
关于Synthase的误译问题蒋秉坤(蚌埠医学院临床生化教研室,233003)关键词Synthase,误译δ-氨基-γ-酮戊酸(aminolevulinicacid,ALA)是血红素合成代谢的中间产物之一。它是由底物琥珀酰单酰辅酶A和甘氨酸在ALA合...  相似文献   

2.
Cassava is an important staple food crop, feeding 600 million people worldwide, which produce cyanogenic glycosides. Cyanogenic glycosides in cassava are known to act as a deterrent for herbivores as well as serve as a mobile source of reduced nitrogen. Cassava is also equipped with a cyanide detoxification pathway, mediated by β-cyanoalanine synthase (β-CAS) which converts cyanide into asparagine. β-CAS, belonging to the Bsas family of enzymes, is multi functional and shares sequence homology with cysteine synthase (CS). Using rapid amplification of cDNA end-polymerase chain reaction (RACE-PCR), two cDNA sequences were isolated from cassava. The two clones named MANes;BsasA (accession no. EU350583) and MANes;BsasB (accession no. HQ257219), showed high homology to known β-CAS enzymes (80% and 75% amino acid similarity to Arabidopsis and 76% and 82% similarity to spinach, respectively). The kinetic properties of the two clones were characterized in a Escherichia coli NK3 mutant strain which lacks activity for any of the Bsas proteins. Kinetic studies showed that MANes;BsasB is a β-CAS with a CAS/CS activity ratio of 72 while MANes;BsasA is a CS showing bifunctional capabilities and with a CAS/CS activity ratio of 11. The isolation of cassava β-CAS and CS genes reported here paves the way for their utilization in genetically enhancing the cyanide detoxification potential of cassava and/or increase of the essential amino acid cysteine, which has been found to be low in nutritionally compromised individuals.  相似文献   

3.
4.
The relationship between 3-deoxy-D-manno-2-octulosonic acid 8-phosphate (KDO 8-P) synthase and 3-deoxy-D-arabino-2-heptulosonic acid 7-phosphate (DAH 7-P) synthase has not been adequately addressed in the literature. Based on recent reports of a metal requiring KDO 8-P synthase and the newly solved X-ray crystal structures of both Escherichia coli KDO 8-P synthase and DAH 7-P synthase, we begin to address the evolutionary kinship between these catalytically similar enzymes. Using a maximum likelihood-based grouping of 29 KDO 8-P synthase sequences, we demonstrate the existence of a new class of KDO 8-P synthase, the members of which we propose to require a metal cofactor for catalysis. Similarly, we hypothesize a class of DAH 7-P synthase that does not have the metal requirement of the heretofore model E. coli enzyme. Based on this information and a careful investigation of the reported X-ray crystal structures, we also propose that KDO 8-P synthase and DAH 7-P synthase are the product of a divergent evolutionary process from a common ancestor.  相似文献   

5.
Current literature on the structure and function of the chloroplast ATP synthase is reviewed with an emphasis on the roles of the gamma and epsilon subunits. Together these two subunits are thought to couple, via rotation, the proton motive force to nucleotide synthesis and hydrolysis by the catalytic F(1) segment of the enzyme. These two subunits are also responsible for inducing the latent state of the enzyme that is necessary to prevent futile hydrolysis of ATP in the dark when electron transfer and ATP synthesis are inactive. A model is presented to explain how gamma and epsilon interact to achieve the transition between the active and latent states.  相似文献   

6.
7.
Electron microscopy together with image analysis has been used to study the structure of theintact F1F0-ATPsynthase from Escherichia coli. A procedure has been developed which allowspreparation of detergent-free enzyme. Aside from the well known two-domain structure, imagesof F1F0 prepared by this procedure show a number of additional features, including a secondstalk, which can be seen extending all the way from the F0 to the top of the F1 in some images,and a small protein on the very top of the F1, which has been identified as the subunit bydecoration with a monoclonal antibody. In light of these results, a refined model of the subunitarrangement of the complex is presented.  相似文献   

8.
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix motif, termed “DELSEED-loop,” in the C-terminal domain of the β subunit was suggested to be involved in coupling between catalysis and rotation. Here, the role of the DELSEED-loop was investigated by functional analysis of mutants of Bacillus PS3 ATP synthase that had 3–7 amino acids within the loop deleted. All mutants were able to catalyze ATP hydrolysis, some at rates several times higher than the wild-type enzyme. In most cases ATP hydrolysis in membrane vesicles generated a transmembrane proton gradient, indicating that hydrolysis occurred via the normal rotational mechanism. Except for two mutants that showed low activity and low abundance in the membrane preparations, the deletion mutants were able to catalyze ATP synthesis. In general, the mutants seemed less well coupled than the wild-type enzyme, to a varying degree. Arrhenius analysis demonstrated that in the mutants fewer bonds had to be rearranged during the rate-limiting catalytic step; the extent of this effect was dependent on the size of the deletion. The results support the idea of a significant involvement of the DELSEED-loop in mechanochemical coupling in ATP synthase. In addition, for two deletion mutants it was possible to prepare an α3β3γ subcomplex and measure nucleotide binding to the catalytic sites. Interestingly, both mutants showed a severely reduced affinity for MgATP at the high affinity site.F1F0-ATP synthase catalyzes the final step of oxidative phosphorylation and photophosphorylation, the synthesis of ATP from ADP and inorganic phosphate. F1F0-ATP synthase consists of the membrane-embedded F0 subcomplex, with, in most bacteria, a subunit composition of ab2c10, and the peripheral F1 subcomplex, with a subunit composition of α3β3γδε. The energy necessary for ATP synthesis is derived from an electrochemical transmembrane proton (or, in some organisms, a sodium ion) gradient. Proton flow down the gradient through F0 is coupled to ATP synthesis on F1 by a unique rotary mechanism. The protons flow through (half) channels at the interface of the a and c subunits, which drives rotation of the ring of c subunits. The c10 ring, together with F1 subunits γ and ε, forms the rotor. Rotation of γ leads to conformational changes in the catalytic nucleotide binding sites on the β subunits, where ADP and Pi are bound. The conformational changes result in the formation and release of ATP. Thus, ATP synthase converts electrochemical energy, the proton gradient, into mechanical energy in the form of subunit rotation and back into chemical energy as ATP. In bacteria, under certain physiological conditions, the process runs in reverse. ATP is hydrolyzed to generate a transmembrane proton gradient, which the bacterium requires for such functions as nutrient import and locomotion (for reviews, see Refs. 16).F1 (or F1-ATPase) has three catalytic nucleotide binding sites located on the β subunits at the interface to the adjacent α subunit. The catalytic sites have pronounced differences in their nucleotide binding affinity. During rotational catalysis, the sites switch their affinities in a synchronized manner; the position of γ determines which catalytic site is the high affinity site (Kd1 in the nanomolar range), which site is the medium affinity site (Kd2 ≈ 1 μm), and which site is the low affinity site (Kd3 ≈ 30–100 μm; see Refs. 7 and 8). In the original crystal structure of bovine mitochondrial F1 (9), one of the three catalytic sites, was filled with the ATP analog AMP-PNP,2 a second was filled with ADP (plus azide) (see Ref. 10), and the third site was empty. Hence, the β subunits are referred to as βTP, βDP, and βE. The occupied β subunits, βTP and βDP, were in a closed conformation, and the empty βE subunit was in an open conformation. The main difference between these two conformations is found in the C-terminal domain. Here, the “DELSEED-loop,” a helix-turn-helix structure containing the conserved DELSEED motif, is in an “up” position when the catalytic site on the respective β subunit is filled with nucleotide and in a “down” position when the site is empty (Fig. 1A). When all three catalytic sites are occupied by nucleotide, the previously open βE subunit assumes an intermediate, half-closed (βHC) conformation. It cannot close completely because of steric clashes with γ (11).Open in a separate windowFIGURE 1.The βDELSEED-loop. A, interaction of the βTP and βE subunits with theγ subunit.β subunits are shown in yellow andγ in blue. The DELSEED-loop (shown in orange, with the DELSEED motif itself in green)of βTP interacts with the C-terminal helixγ and the short helix that runs nearly perpendicular to the rotation axis. The DELSEED-loop of βE makes contact with the convex portion of γ, formed mainly by the N-terminal helix. A nucleotide molecule (shown in stick representation) occupies the catalytic site of βTP, and the subunit is in the closed conformation. The catalytic site on βE is empty, and the subunit is in the open conformation. This figure is based on Protein Data Bank file 1e79 (32). B, deletions in the βDELSEED-loop. The loop was “mutated” in silico to represent the PS3 ATP synthase. The 3–4-residue segments that are removed in the deletion mutants are color-coded as follows: 380LQDI383, pink; 384IAIL387, green; 388GMDE391, yellow; 392LSD394, cyan; 395EDKL398, orange; 399VVHR402, blue. Residues that are the most involved in contacts with γ are labeled. All figures were generated using the program PyMOL (DeLano Scientific, San Carlos, CA).The DELSEED-loop of each of the three β subunits makes contact with the γ subunit. In some cases, these contacts consist of hydrogen bonds or salt bridges between the negatively charged residues of the DELSEED motif and positively charged residues on γ. The interactions of the DELSEED-loop with γ, its movement during catalysis, the conservation of the DELSEED motif (see 1214). Thus, the finding that an AALSAAA mutant in the α3β3γ complex of ATP synthase from the thermophilic Bacillus PS3, where several hydrogen bonds/salt bridges to γ are removed simultaneously, could drive rotation of γ with the same torque as the wild-type enzyme (14) came as a surprise. On the other hand, it seems possible that it is the bulk of the DELSEED-loop, more so than individual interactions, that drives rotation of γ. According to a model favored by several authors (6, 15, 16) (see also Refs. 1719), binding of ATP (or, more precisely, MgATP) to the low affinity catalytic site on βE and the subsequent closure of this site, accompanied by its conversion into the high affinity site, are responsible for driving the large (80–90°) rotation substep during ATP hydrolysis, with the DELSEED-loop acting as a “pushrod.” A recent molecular dynamics (20) study supports this model and implicates mainly the region around several hydrophobic residues upstream of the DELSEED motif (specifically βI386 and βL387)3 as being responsible for making contact with γ during the large rotation substep.

TABLE 1

Conservation of residues in the DELSEED-loop Amino acids found in selected species in the turn region of the DELSEED-loop. Listed are all positions subjected to deletions in the present study. Residue numbers refer to the PS3 enzyme. Consensus annotation: p, polar residue; s, small residue; h, hydrophobic residue; –, negatively charged residue; +, positively charged residue.Open in a separate windowIn the present study, we investigated the function of the DELSEED-loop using an approach less focused on individual residues, by deleting stretches of 3–7 amino acids between positions β380 and β402 of ATP synthase from the thermophilic Bacillus PS3. We analyzed the functional properties of the deletion mutants after expression in Escherichia coli. The mutants showed ATPase activities, which were in some cases surprisingly high, severalfold higher than the activity of the wild-type control. On the other hand, in all cases where ATP synthesis could be measured, the rates where below or equal to those of the wild-type enzyme. In Arrhenius plots, the hydrolysis rates of the mutants were less temperature-dependent than those of wild-type ATP synthase. In those cases where nucleotide binding to the catalytic sites could be tested, the deletion mutants had a much reduced affinity for MgATP at high affinity site 1. The functional role of the DELSEED-loop will be discussed in light of the new information.  相似文献   

9.
Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.  相似文献   

10.

Background

The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy.

Methodology/Principal Findings

Here we identified the leuA gene encoding α-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with crosses between wild type and leucine auxotrophic strains. To confirm the function of the gene, Phycomyces leuA was used to complement the auxotrophic phenotype exhibited by mutation of the leu3+ gene of the ascomycete fungus Schizosaccharomyces pombe. Phylogenetic analysis revealed that the leuA gene in Phycomyces, other zygomycetes, and the chytrids is more closely related to homologs in plants and photosynthetic bacteria than ascomycetes or basidiomycetes, and suggests that the Dikarya have acquired the gene more recently.

Conclusions/Significance

The identification of leuA in Phycomyces adds to the growing body of evidence that some primary metabolic pathways or parts of them have arisen multiple times during the evolution of fungi, probably through horizontal gene transfer events.  相似文献   

11.
The possibility that glycogen synthase kinase 3 (GSK3) could modulate α1A-adrenergic receptor (α1A-AR) function and regulation was tested employing LNCaP and HEK293 cells transfected to express the enhanced green fluorescent protein-tagged human α1A-AR. Receptor phosphorylation and internalization, intracellular free calcium, α1A-AR-GSK3 colocalization, and coimmunoprecipitation were studied. The effects of the pharmacological GSK3 inhibitor, SB-216763, and the coexpression of a dominant-negative mutant of this kinase, as well as the signaling, desensitization, and internalization of receptors with S229, S258, S352, and S381 substitutions for alanine or aspartate, were also determined. SB-216763 inhibited agonist- and phorbol myristate acetate (PMA)-mediated α1A-AR phosphorylation, reduced oxymetazoline-induced desensitization, and magnified that induced by PMA. Agonists and PMA increased receptor-GSK3 colocalization and coimmunoprecipitation. Expression of a dominant-negative GSK3 mutant reduced agonist- but not PMA-induced receptor internalization. α1A-AR with the GSK3 putative target sites mutated to alanine exhibited reduced phosphorylation and internalization in response to agonists and increased PMA-induced desensitization. Agonist-induced, but not PMA-induced, receptor-β arrestin intracellular colocalization was diminished in cells expressing the GSK3 putative target sites mutated to alanine. Our data indicated that GSK3 exerts a dual action on α1A-AR participating in agonist-mediated desensitization and internalization and avoiding PMA-induced desensitization.  相似文献   

12.
13.
《Cell metabolism》2019,29(5):1119-1134.e12
  1. Download : Download high-res image (291KB)
  2. Download : Download full-size image
  相似文献   

14.
Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species.  相似文献   

15.
γδ T cells play critical roles in host defense against infections and cancer. Although advances have been made in identifying γδ TCR ligands, it remains essential to understand molecular mechanisms responsible for in vivo expansion of γδ T cells in periphery. Recent findings identified the expression of the inducible NO synthase (NOS2) in lymphoid cells and highlighted novel immunoregulatory functions of NOS2 in αβ T cell differentiation and B cell survival. In this context, we wondered whether NOS2 exerts an impact on γδ T cell properties. Here, we show that γδ T cells express NOS2 not only in vitro after TCR triggering, but also directly ex vivo. Nos2 deficient mice have fewer γδ T cells in peripheral lymph nodes (pLNs) than their wild-type counterparts, and these cells exhibit a reduced ability to produce IL-2. Using chemical NOS inhibitors and Nos2 deficient γδ T cells, we further evidence that the inactivation of endogenous NOS2 significantly reduced γδ T cell proliferation and glycolysis metabolism that can be restored in presence of exogenous IL-2. Collectively, we demonstrate the crucial role of endogenous NOS2 in promoting optimal IL-2 production, proliferation and glycolysis of γδ T cells that may contribute to their regulation at steady state.  相似文献   

16.
《Experimental mycology》1993,17(2):130-141
Awald, P., Zugel, M., Monks, C., Frost, D., and Selitrennikoff, C. P. 1993. Purification of 1,3-β-glucan synthase from Neurospora crassa by product entrapment. Experimental Mycology, 17, 130-141. 1,3-β-Glucan synthase activity of the ascomycete Neurospora crassa was purified ∼700-fold from hyphae. Hyphae were disrupted by bead-beating, and membrane-enriched fractions were obtained by high-speed centrifugation. Membranes were treated with (3-[(3-cholamidopropyl)dimethyl-ammoniol]I-propanesulfonate) and octyl-β-D-glucoside to solubilize enzyme activity. Soluble glucan synthase activity was incubated with substrate (UDP-glucose) and purified by centrifugation of enzyme associated with glucan (product entrapment). Purification was specific for UDP-glucose, the optimal concentration being 0.25 mM; no other nucleotide diphosphate sugar was able to significantly product-entrap enzyme activity. Partially purified enzyme activity formed β(1,3)-linked glucan, had a mean specific activity of 1900 nmol glucose incorporated/min/mg protein, a Km,app of 0.7 mM, and a Vmax of 0.5 nmol glucose incorporated/min. Separation of partially purified enzyme activity by SDS-PAGE showed a number of proteins copurifying with enzyme activity; computer analysis of digitized gel images revealed that proteins of 21, 25, 28, 45, 53, and 78 kDa were enriched. These results reinforce the view that 1,3-β-glucan synthase activity of fungi is a multimeric enzyme.  相似文献   

17.
Theε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps more importantly, theε-subunit is essential for the coupling of proton translocation to ATP synthesis (as proton gate). The relation between the structure and function ofε-subunit of ATP synthase in higher plant chloroplast has been studied by molecular biological methods such as site-directed mu-tagenesis and truncations for C- or N-terminus ofε-subunit. The results showed that: (1) Thr42 ofε-subunit is important for its structure and function; (2) compared with theε-subunit in E.. coli, theε-subunit of chloroplast ATP synthase is more sensitive to C- or N-terminus truncations.  相似文献   

18.
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F1, a water-soluble catalytic sector, and Fo, a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of in the ATP synthase from E. coli is discussed.  相似文献   

19.
Subunit ɛ of bacterial and chloroplast FOF1-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit ɛ can adopt two conformations. In the “extended”, inhibitory conformation, its two C-terminal α-helices are stretched along subunit γ. In the “contracted”, noninhibitory conformation, these helices form a hairpin. The transition of subunit ɛ from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59°C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit ɛ and in the N-terminus of subunit γ was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 μM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit β were found to stabilize the extended conformation of ɛ. Binding of ATP directly to ɛ was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 μM) suggests that subunit ɛ probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value.  相似文献   

20.

Introduction

Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.

Methods and Results

The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.

Conclusions

eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号