首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m−2) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log10 after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log10 after 6 h) was obtained only in the presence of riboflavin and 250 W m−2 irradiance.Solar disinfection (SODIS) is an established and proven technique for the generation of safer drinking water (11). Water is collected into transparent plastic polyethylene terephthalate (PET) bottles and placed in direct sunlight for 6 to 8 h prior to consumption (14). The application of SODIS has been shown to be a simple and cost-effective method for reducing the incidence of gastrointestinal infection in communities where potable water is not available (2-4). Under laboratory conditions using simulated sunlight, SODIS has been shown to inactivate pathogenic bacteria, fungi, viruses, and protozoa (6, 12, 15). Although SODIS is not fully understood, it is believed to achieve microbial killing through a combination of DNA-damaging effects of ultraviolet (UV) radiation and thermal inactivation from solar heating (21).The combination of UVA radiation and riboflavin (vitamin B2) has recently been reported to have therapeutic application in the treatment of bacterial and fungal ocular pathogens (13, 17) and has also been proposed as a method for decontaminating donor blood products prior to transfusion (1). In the present study, we report that the addition of riboflavin significantly enhances the disinfectant efficacy of simulated SODIS against bacterial, fungal, and protozoan pathogens.Chemicals and media were obtained from Sigma (Dorset, United Kingdom), Oxoid (Basingstoke, United Kingdom), and BD (Oxford, United Kingdom). Pseudomonas aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Candida albicans (ATCC 10231), and Fusarium solani (ATCC 36031) were obtained from ATCC (through LGC Standards, United Kingdom). Escherichia coli (JM101) was obtained in house, and the Legionella pneumophila strain used was a recent environmental isolate.B. subtilis spores were produced from culture on a previously published defined sporulation medium (19). L. pneumophila was grown on buffered charcoal-yeast extract agar (5). All other bacteria were cultured on tryptone soy agar, and C. albicans was cultured on Sabouraud dextrose agar as described previously (9). Fusarium solani was cultured on potato dextrose agar, and conidia were prepared as reported previously (7). Acanthamoeba polyphaga (Ros) was isolated from an unpublished keratitis case at Moorfields Eye Hospital, London, United Kingdom, in 1991. Trophozoites were maintained and cysts prepared as described previously (8, 18).Assays were conducted in transparent 12-well tissue culture microtiter plates with UV-transparent lids (Helena Biosciences, United Kingdom). Test organisms (1 × 106/ml) were suspended in 3 ml of one-quarter-strength Ringer''s solution or natural freshwater (as pretreated water from a reservoir in United Kingdom) with or without riboflavin (250 μM). The plates were exposed to simulated sunlight at an optical output irradiance of 150 watts per square meter (W m−2) delivered from an HPR125 W quartz mercury arc lamp (Philips, Guildford, United Kingdom). Optical irradiances were measured using a calibrated broadband optical power meter (Melles Griot, Netherlands). Test plates were maintained at 30°C by partial submersion in a water bath.At timed intervals for bacteria and fungi, the aliquots were plated out by using a WASP spiral plater and colonies subsequently counted by using a ProtoCOL automated colony counter (Don Whitley, West Yorkshire, United Kingdom). Acanthamoeba trophozoite and cyst viabilities were determined as described previously (6). Statistical analysis was performed using a one-way analysis of variance (ANOVA) of data from triplicate experiments via the InStat statistical software package (GraphPad, La Jolla, CA).The efficacies of simulated sunlight at an optical output irradiance of 150 W m−2 alone (SODIS) and in the presence of 250 μM riboflavin (SODIS-R) against the test organisms are shown in Table Table1.1. With the exception of B. subtilis spores and A. polyphaga cysts, SODIS-R resulted in a significant increase in microbial killing compared to SODIS alone (P < 0.001). In most instances, SODIS-R achieved total inactivation by 2 h, compared to 6 h for SODIS alone (Table (Table1).1). For F. solani, C. albicans, ands A. polyphaga trophozoites, only SODIS-R achieved a complete organism kill after 4 to 6 h (P < 0.001). All control experiments in which the experiments were protected from the light source showed no reduction in organism viability over the time course (results not shown).

TABLE 1.

Efficacies of simulated SODIS for 6 h alone and with 250 μM riboflavin (SODIS-R)
OrganismConditionaLog10 reduction in viability at indicated h of exposureb
1246
E. coliSODIS0.0 ± 0.00.2 ± 0.15.7 ± 0.05.7 ± 0.0
SODIS-R1.1 ± 0.05.7 ± 0.05.7 ± 0.05.7 ± 0.0
L. pneumophilaSODIS0.7 ± 0.21.3 ± 0.34.8 ± 0.24.8 ± 0.2
SODIS-R4.4 ± 0.04.4 ± 0.04.4 ± 0.04.4 ± 0.0
P. aeruginosaSODIS0.7 ± 0.01.8 ± 0.04.9 ± 0.04.9 ± 0.0
SODIS-R5.0 ± 0.05.0 ± 0.05.0 ± 0.05.0 ± 0.0
S. aureusSODIS0.0 ± 0.00.0 ± 0.06.2 ± 0.06.2 ± 0.0
SODIS-R0.2 ± 0.16.3 ± 0.06.3 ± 0.06.3 ± 0.0
C. albicansSODIS0.2 ± 0.00.4 ± 0.10.5 ± 0.11.0 ± 0.1
SODIS-R0.1 ± 0.00.7 ± 0.15.3 ± 0.05.3 ± 0.0
F. solani conidiaSODIS0.2 ± 0.10.3 ± 0.00.2 ± 0.00.7 ± 0.1
SODIS-R0.3 ± 0.10.8 ± 0.11.3 ± 0.14.4 ± 0.0
B. subtilis sporesSODIS0.3 ± 0.00.2 ± 0.00.0 ± 0.00.1 ± 0.0
SODIS-R0.1 ± 0.10.2 ± 0.10.3 ± 0.30.1 ± 0.0
SODIS (250 W m−2)0.1 ± 0.00.1 ± 0.10.1 ± 0.10.0 ± 0.0
SODIS-R (250 W m−2)0.0 ± 0.00.0 ± 0.00.2 ± 0.00.4 ± 0.0
SODIS (320 W m−2)0.1 ± 0.10.1 ± 0.00.0 ± 0.14.3 ± 0.0
SODIS-R (320 W m−2)0.1 ± 0.00.1 ± 0.10.9 ± 0.04.3 ± 0.0
A. polyphaga trophozoitesSODIS0.4 ± 0.20.6 ± 0.10.6 ± 0.20.4 ± 0.1
SODIS-R0.3 ± 0.11.3 ± 0.12.3 ± 0.43.1 ± 0.2
SODIS, naturalc0.3 ± 0.10.4 ± 0.10.5 ± 0.20.3 ± 0.2
SODIS-R, naturalc0.2 ± 0.11.0 ± 0.22.2 ± 0.32.9 ± 0.3
A. polyphaga cystsSODIS0.4 ± 0.10.1 ± 0.30.3 ± 0.10.4 ± 0.2
SODIS-R0.4 ± 0.20.3 ± 0.20.5 ± 0.10.8 ± 0.3
SODIS (250 W m−2)0.0 ± 0.10.2 ± 0.30.2 ± 0.10.1 ± 0.2
SODIS-R (250 W m−2)0.4 ± 0.20.3 ± 0.20.8 ± 0.13.5 ± 0.3
SODIS (250 W m−2), naturalc0.0 ± 0.30.2 ± 0.10.1 ± 0.10.2 ± 0.1
SODIS-R (250 W m−2), naturalc0.1 ± 0.10.2 ± 0.20.6 ± 0.13.4 ± 0.2
Open in a separate windowaConditions are at an intensity of 150 W m−2 unless otherwise indicated.bThe values reported are means ± standard errors of the means from triplicate experiments.cAdditional experiments for this condition were performed using natural freshwater.The highly resistant A. polyphaga cysts and B. subtilis spores were unaffected by SODIS or SODIS-R at an optical irradiance of 150 W m−2. However, a significant reduction in cyst viability was observed at 6 h when the optical irradiance was increased to 250 W m−2 for SODIS-R only (P < 0.001; Table Table1).1). For spores, a kill was obtained only at 320 W m−2 after 6-h exposure, and no difference between SODIS and SODIS-R was observed (Table (Table1).1). Previously, we reported a >2-log kill at 6 h for Acanthamoeba cysts by using SODIS at the higher optical irradiance of 850 W m−2, compared to the 0.1-log10 kill observed here using the lower intensity of 250 W m−2 or the 3.5-log10 kill with SODIS-R.Inactivation experiments performed with Acanthamoeba cysts and trophozoites suspended in natural freshwater gave results comparable to those obtained with Ringer''s solution (P > 0.05; Table Table1).1). However, it is acknowledged that the findings of this study are based on laboratory-grade water and freshwater and that differences in water quality through changes in turbidity, pH, and mineral composition may significantly affect the performance of SODIS (20). Accordingly, further studies are indicated to evaluate the enhanced efficacy of SODIS-R by using natural waters of varying composition in the areas where SODIS is to be employed.Previous studies with SODIS under laboratory conditions have employed lamps delivering an optical irradiance of 850 W m−2 to reflect typical natural sunlight conditions (6, 11, 12, 15, 16). Here, we used an optical irradiance of 150 to 320 W m−2 to obtain slower organism inactivation and, hence, determine the potential enhancing effect of riboflavin on SODIS.In conclusion, this study has shown that the addition of riboflavin significantly enhances the efficacy of simulated SODIS against a range of microorganisms. The precise mechanism by which photoactivated riboflavin enhances antimicrobial activity is unknown, but studies have indicated that the process may be due, in part, to the generation of singlet oxygen, H2O2, superoxide, and hydroxyl free radicals (10). Further studies are warranted to assess the potential benefits from riboflavin-enhanced SODIS in reducing the incidence of gastrointestinal infection in communities where potable water is not available.  相似文献   

2.
3.
4.
5.
6.
Predator-prey relationships among prokaryotes have received little attention but are likely to be important determinants of the composition, structure, and dynamics of microbial communities. Many species of the soil-dwelling myxobacteria are predators of other microbes, but their predation range is poorly characterized. To better understand the predatory capabilities of myxobacteria in nature, we analyzed the predation performance of numerous Myxococcus isolates across 12 diverse species of bacteria. All predator isolates could utilize most potential prey species to effectively fuel colony expansion, although one species hindered predator swarming relative to a control treatment with no growth substrate. Predator strains varied significantly in their relative performance across prey types, but most variation in predatory performance was determined by prey type, with Gram-negative prey species supporting more Myxococcus growth than Gram-positive species. There was evidence for specialized predator performance in some predator-prey combinations. Such specialization may reduce resource competition among sympatric strains in natural habitats. The broad prey range of the Myxococcus genus coupled with its ubiquity in the soil suggests that myxobacteria are likely to have very important ecological and evolutionary effects on many species of soil prokaryotes.Predation plays a major role in shaping both the ecology and evolution of biological communities. The population and evolutionary dynamics of predators and their prey are often tightly coupled and can greatly influence the dynamics of other organisms as well (1). Predation has been invoked as a major cause of diversity in ecosystems (11, 12). For example, predators may mediate coexistence between superior and inferior competitors (2, 13), and differential trajectories of predator-prey coevolution can lead to divergence between separate populations (70).Predation has been investigated extensively in higher organisms but relatively little among prokaryotes. Predation between prokaryotes is one of the most ancient forms of predation (27), and it has been proposed that this process may have been the origin of eukaryotic cells (16). Prokaryotes are key players in primary biomass production (44) and global nutrient cycling (22), and predation of some prokaryotes by others is likely to significantly affect these processes. Most studies of predatory prokaryotes have focused on Bdellovibrionaceae species (e.g., see references 51, 55, and 67). These small deltaproteobacteria prey on other Gram-negative cells, using flagella to swim rapidly until they collide with a prey cell. After collision, the predator cells then enter the periplasmic space of the prey cell, consume the host cell from within, elongate, and divide into new cells that are released upon host cell lysis (41). Although often described as predatory, the Bdellovibrionaceae may also be considered to be parasitic, as they typically depend (apart from host-independent strains that have been observed [60]) on the infection and death of their host for their reproduction (47).In this study, we examined predation among the myxobacteria, which are also deltaproteobacteria but constitute a monophyletic clade divergent from the Bdellovibrionaceae (17). Myxobacteria are found in most terrestrial soils and in many aquatic environments as well (17, 53, 74). Many myxobacteria, including the model species Myxococcus xanthus, exhibit several complex social traits, including fruiting body formation and spore formation (14, 18, 34, 62, 71), cooperative swarming with two motility systems (64, 87), and group (or “wolf pack”) predation on both bacteria and fungi (4, 5, 8, 9, 15, 50). Using representatives of the genus Myxococcus, we tested for both intra- and interspecific variation in myxobacterial predatory performance across a broad range of prey types. Moreover, we examined whether prey vary substantially in the degree to which they support predatory growth by the myxobacteria and whether patterns of variation in predator performance are constant or variable across prey environments. The latter outcome may reflect adaptive specialization and help to maintain diversity in natural populations (57, 59).Although closely related to the Bdellovibrionaceae (both are deltaproteobacteria), myxobacteria employ a highly divergent mode of predation. Myxobacteria use gliding motility (64) to search the soil matrix for prey and produce a wide range of antibiotics and lytic compounds that kill and decompose prey cells and break down complex polymers, thereby releasing substrates for growth (66). Myxobacterial predation is cooperative both in its “searching” component (6, 31, 82; for details on cooperative swarming, see reference 64) and in its “handling” component (10, 29, 31, 32), in which secreted enzymes turn prey cells into consumable growth substrates (56, 83). There is evidence that M. xanthus employs chemotaxis-like genes in its attack on prey cells (5) and that predation is stimulated by close contact with prey cells (48).Recent studies have revealed great genetic and phenotypic diversity within natural populations of M. xanthus, on both global (79) and local (down to centimeter) scales (78). Phenotypic diversity includes variation in social compatibility (24, 81), the density and nutrient thresholds triggering development (33, 38), developmental timing (38), motility rates and patterns (80), and secondary metabolite production (40). Although natural populations are spatially structured and both genetic diversity and population differentiation decrease with spatial scale (79), substantial genetic diversity is present even among centimeter-scale isolates (78). No study has yet systematically investigated quantitative natural variation in myxobacterial predation phenotypes across a large number of predator genotypes.Given the previous discovery of large variation in all examined phenotypes, even among genetically extremely similar strains, we anticipated extensive predatory variation as well. Using a phylogenetically broad range of prey, we compared and contrasted the predatory performance of 16 natural M. xanthus isolates, sampled from global to local scales, as well as the commonly studied laboratory reference strain DK1622 and representatives of three additional Myxococcus species: M. flavescens (86), M. macrosporus (42), and M. virescens (63) (Table (Table1).1). In particular, we measured myxobacterial swarm expansion rates on prey lawns spread on buffered agar (31, 50) and on control plates with no nutrients or with prehydrolyzed growth substrate.

TABLE 1.

List of myxobacteria used, with geographical origin
Organism abbreviation used in textSpeciesStrainGeographic originReference(s)
A9Myxococcus xanthusA9Tübingen, Germany78
A23Myxococcus xanthusA23Tübingen, Germany78
A30Myxococcus xanthusA30Tübingen, Germany78
A41Myxococcus xanthusA41Tübingen, Germany78
A46Myxococcus xanthusA46Tübingen, Germany78
A47Myxococcus xanthusA47Tübingen, Germany78
A75Myxococcus xanthusA75Tübingen, Germany78
A85Myxococcus xanthusA85Tübingen, Germany78
TVMyxococcus xanthusTvärminneTvärminne, Finland79
PAKMyxococcus xanthusPaklenicaPaklenica, Croatia79
MADMyxococcus xanthusMadeira 1Madeira, Portugal79
WARMyxococcus xanthusWarwick 1Warwick, UK79
TORMyxococcus xanthusToronto 1Toronto, Ontario, Canada79
SUL2Myxococcus xanthusSulawesi 2Sulawesi, Indonesia79
KALMyxococcus xanthusKalalauKalalau, HI79
DAVMyxococcus xanthusDavis 1ADavis, CA79
GJV1Myxococcus xanthusGJV 1Unknown35, 72
MXFL1Myxococcus flavescensMx fl1Unknown65
MXV2Myxococcus virescensMx v2Unknown65
CCM8Myxococcus macrosporusCc m8Unknown65
Open in a separate window  相似文献   

7.
Melioidosis has been considered an emerging disease in Brazil since the first cases were reported to occur in the northeast region. This study investigated two municipalities in Ceará state where melioidosis cases have been confirmed to occur. Burkholderia pseudomallei was isolated in 26 (4.3%) of 600 samples in the dry and rainy seasons.Melioidosis is an endemic disease in Southeast Asia and northern Australia (2, 4) and also occurs sporadically in other parts of the world (3, 7). Human melioidosis was reported to occur in Brazil only in 2003, when a family outbreak afflicted four sisters in the rural part of the municipality of Tejuçuoca, Ceará state (14). After this episode, there was one reported case of melioidosis in 2004 in the rural area of Banabuiú, Ceará (14). And in 2005, a case of melioidosis associated with near drowning after a car accident was confirmed to occur in Aracoiaba, Ceará (11).The goal of this study was to investigate the Tejuçuoca and Banabuiú municipalities, where human cases of melioidosis have been confirmed to occur, and to gain a better understanding of the ecology of Burkholderia pseudomallei in this region.We chose as central points of the study the residences and surrounding areas of the melioidosis patients in the rural areas of Banabuiú (5°18′35″S, 38°55′14″W) and Tejuçuoca (03°59′20″S, 39°34′50′W) (Fig. (Fig.1).1). There are two well-defined seasons in each of these locations: one rainy (running from January to May) and one dry (from June to December). A total of 600 samples were collected at five sites in Tejuçuoca (T1, T2, T3, T4, and T5) and five in Banabuiú (B1, B2, B3, B4, and B5), distributed as follows (Fig. (Fig.2):2): backyards (B1 and T1), places shaded by trees (B2 and T2), water courses (B3 and T3), wet places (B4 and T4), and stock breeding areas (B5 and T5).Open in a separate windowFIG. 1.Municipalities of Banabuiú (5°18′35″S, 38°55′14″W) and Tejuçuoca (03°59′20″S, 39°34′50″W).Open in a separate windowFIG. 2.Soil sampling sites in Banabuiú and Tejuçuoca.Once a month for 12 months (a complete dry/rainy cycle), five samples were gathered at five different depths: at the surface and at 10, 20, 30 and 40 cm (Table (Table1).1). The samples were gathered according to the method used by Inglis et al. (9). Additionally, the sample processing and B. pseudomallei identification were carried out as previously reported (1, 8, 9).

TABLE 1.

Distribution of samples with isolates by site and soil depth
Sitesa and depth (cm)No. of B. pseudomallei isolates in samples from:
Banabuiú (n = 300)Tejuçuoca (n = 300)Total (n = 600)
B1/T13
    Surface2
    10
    201
    30
    40
B2/T21
    Surface1
    10
    20
    30
    40
B3/T315
    Surface2
    102
    204
    303
    404
B4/T45
    Surface
    101
    201
    3011
    401
B5/T52
    Surface
    10
    20
    302
    40
Total62026
Open in a separate windowaSites designated with B are in Banabuiú, and sites designated with T are in Tejuçuoca. See the text for details.The data on weather and soil composition were obtained from specialized government institutions, such as FUNCEME, IPECE, and EMBRAPA. The average annual temperature in both municipalities is between 26 and 28°C. In 2007, the annual rainfall in Tejuçuoca was 496.8 mm, and that in Banabuiú was 766.8 mm. There are a range of soil types in both Tejuçuoca and Banabuiú: noncalcic brown, sodic planossolic, red-yellow podzolic, and litholic. In Banabuiú, there are also alluvial and cambisol soils. The characteristic vegetation in both municipalities is caatinga (scrublands).There were isolates of B. pseudomallei in 26 (4.3%) of the 600 samples collected. The bacterium was isolated at a rate (3%) similar to that previously reported (9). The bacterium isolation occurred in both the dry (53.8%) and the rainy (46.2%) seasons. Tejuçuoca represented 76.9% (20/26) of the strains isolated. Four sites in Tejuçuoca (T1, T3, T4, and T5) and three in Banabuiú (B1, B2, and B4) presented isolates of the bacterium (Table (Table1).1). The isolation of the B. pseudomallei strains varied from the surface down to 40 cm. However, 17 of the 26 positive samples (65.3%) were found at depths between 20 and 40 cm (Table (Table1).1). Only two isolates were found at the surface during the dry season.A study in Vietnam (13) and one in Australia (9) reported the presence of B. pseudomallei near the houses of melioidosis patients. In our study, the same thing happened. Site T3 (15/26; 57.6%) was located 290 m from the patient''s house, as reported by the Rolim group (14).B. pseudomallei was isolated from a sheep paddock in Australia, where animals sought shelter below mango and fig trees (17). In our study, the bacterium was isolated at site T5, a goat corral alongside the house where the outbreak occurred in Tejuçuoca. Four sites in places shaded by trees yielded positive samples (30.7%) in both Tejuçuoca (palm trees) and Banabuiú (mango trees). Additionally, B. pseudomallei was isolated on three occasions from a cornfield (site 4B) located alongside the house of the melioidosis patient in Banabuiú.In the main areas of endemicity, the disease is more prevalent in the rainy season (4, 5, 16). The outbreak in Tejuçuoca was related to rainfall (14). Besides the association of cases of the disease with rainfall itself, the isolation of B. pseudomallei in soil and water was also demonstrated during the dry season (12, 15). An Australian study isolated strains from soil and water during the dry and rainy seasons (17). A Thai study also reported B. pseudomallei in the dry season (18). In our study, the isolation of B. pseudomallei took place either at the end of the wet season or in the dry months. Fourteen of the positive samples (53.8%) were collected during the dry season, albeit near a river or reservoir (sites T3 and B4).Physical, biological, and chemical soil features appear to influence the survival of B. pseudomallei (6, 10). In the present study, the soil was classified as litholic with sandy or clayey textures. It is susceptible to erosion, and when there is a lack of water, it is subject to salinization. During the dry season, the clay layer becomes dried, cracked, and very hard. During the rainy season, it becomes soggy and sticky. The isolation of B. pseudomallei in the dry season is possibly related to the capacity for adaptation of this soil, since the extreme conditions of lithosols do not prevent the bacterial growth and survival.It has been shown that B. pseudomallei is more often isolated at depths between 25 and 45 cm (17). In our study, 65.3% of the positive samples were taken at depths between 20 and 40 cm. Moreover, of these 17 samples, 10 (58.8%) were collected during the dry months. Also, unlike in other regions, two positive samples were taken from the surface in the period without rainfall.The rainfall in Tejuçuoca and Banabuiú is generally low, and temperatures do not vary significantly during the year. Therefore, the isolation of B. pseudomallei in these places occurs outside the rainfall, temperature, and moisture conditions observed in other regions of endemicity. Our data thus suggest that peculiar environmental features, such as soil composition, might favor the multiplication of B. pseudomallei in northeast Brazil.  相似文献   

8.
A 30-probe assay was developed for simultaneous classification of Listeria monocytogenes isolates by lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (EC) type (ECI, ECIa, ECII, and ECIII). The assay was designed to facilitate rapid strain characterization and the integration of subtype data into risk-based inspection programs.Listeria monocytogenes is a facultative intracellular pathogen that can cause serious invasive illness (listeriosis) in humans and other animals. L. monocytogenes is responsible for over 25% of food-borne-disease-related deaths attributable to known pathogens and is a leading cause of food recalls due to microbial adulteration (12, 21). However, not all L. monocytogenes subtypes contribute equally to human illness, and substantial differences in the ecologies and virulence attributes of different L. monocytogenes subtypes have been identified (9, 13, 14, 23, 24, 33, 35, 36). Among the four major evolutionary lineages of L. monocytogenes, only lineages I and II are commonly isolated from contaminated food and human listeriosis patients (19, 27, 29, 33). Lineage I strains are overrepresented among human listeriosis isolates, particularly those associated with epidemic outbreaks, whereas lineage II strains are overrepresented in foods and the environment (13, 14, 24). Lineage III strains account for approximately 1% of human listeriosis cases but are common among animal listeriosis isolates and appear to be a host-adapted group that is poorly adapted to food-processing environments (6, 34-36). The ecological and virulence attributes of lineage IV are poorly understood, as this lineage is rare and was only recently described based on a small number of strains (19, 26, 29, 33).L. monocytogenes is differentiated into 13 serotypes; however, four major serogroups (4b, 1/2b, 1/2a, and 1/2c) from within lineages I and II account for more than 98% of human and food isolates (16, 31). Serogroups refer to evolutionary complexes typified by a predominant serotype but which include very rare serotypes that represent minor evolutionary variants (7, 9, 33). Phylogenetic analyses have indicated that rare serotypes may have evolved recently, or even multiple times, from one of the major serotypes (9), and numerous molecular methods fail to discriminate minor serotypes as independent groups (1, 4, 7, 9, 18, 22, 33, 38, 39). Serotyping is one of the most common methods for L. monocytogenes subtyping, and serogroup classifications are a useful component of strain characterization because ecotype divisions appear largely congruent with serogroup distinctions (16, 34). Serogroup 4b strains are of particular public health concern because contamination with these strains appears to increase the probability that a ready-to-eat (RTE) food will be implicated in listeriosis (16, 28). Serogroup 4b strains account for approximately 40% of sporadic listeriosis and also are responsible for the majority of listeriosis outbreaks despite being relatively rare contaminants of food products (9, 13, 17, 30, 34). In addition, serogroup 4b strains are associated with more severe clinical presentations and higher mortality rates than other serogroups (11, 16, 20, 31, 34). Serogroups 1/2a and 1/2b are overrepresented among food isolates but also contribute significantly to human listeriosis, whereas serogroup 1/2c rarely causes human illness and may pose a lower risk of listeriosis for humans (16). Serogroup-specific differences in association with human listeriosis are consistent with the prevalence of virulence-attenuating mutations in inlA within these serogroups (32, 34); however, a number of additional factors likely contribute to these differences.Four previously described epidemic clones (ECs; ECI, ECIa, ECII, and ECIII) of L. monocytogenes have been implicated in numerous listeriosis outbreaks and have contributed significantly to sporadic illness (15, 34). ECI, ECIa, and ECII are distinct groups within serogroup 4b that were each responsible for repeated outbreaks of listeriosis in the United States and Europe. ECIII is a lineage II clone of serotype 1/2a that persisted in the same processing facility for more than a decade prior to causing a multistate outbreak linked to contaminated turkey (15, 25). While there has been speculation that epidemic clones possess unique adaptations that explain their frequent involvement in listeriosis outbreaks (9, 34, 37), it is not clear that epidemic clones are more virulent than other strains with the same serotype. However, contamination of RTE food with EC strains would be cause for increased concern due to the previous involvement of these clones in major outbreaks of listeriosis (16).As a result of the L. monocytogenes subtype-specific differences in ecology, virulence, and association with human illness, molecular subtyping technologies have the potential to inform assessments of relative risk and to improve risk-based inspection programs. The objective of the present study was to develop a single assay for rapid and accurate classification of L. monocytogenes isolates by lineage, major serogroup, and epidemic clone in order to facilitate strain characterization and the integration of subtype data into inspection programs that are based on assessment of relative risk.A database of more than 5.3 Mb of comparative DNA sequences from 238 L. monocytogenes isolates (9, 33-35) was scanned for single nucleotide polymorphisms that could be used to differentiate lineages, major serogroups, and epidemic clones via a targeted multilocus genotyping (TMLGT) approach. The acronym TMLGT is used to distinguish this approach from previously published multilocus genotyping (MLGT) assays that were lineage specific and designed for haplotype discrimination (9, 33). To provide for simultaneous interrogation of the selected polymorphisms via TMLGT, six genomic regions (Table (Table1)1) were coamplified in a multiplex PCR. While the previous MLGT assays were based on three lineage-specific multiplexes and required prior identification of lineage identity, TMLGT was designed to target variation across all of the lineages simultaneously and is based on a unique set of amplicons. PCR was performed in 50-μl volumes with 1× High Fidelity PCR buffer (Invitrogen Life Technologies), 2 mM MgSO4, 100 μM deoxynucleoside triphosphate (dNTP), 300 nM primer, 1.5 U Platinum Taq high-fidelity DNA polymerase (Invitrogen Life Technologies), and 100 ng of genomic DNA. PCR consisted of an initial denaturation of 90 s at 96°C, followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, and 90 s at 68°C. Amplification products were purified using Montage PCR cleanup filter plates (Millipore) and served as a template for allele-specific primer extension (ASPE) reactions utilizing subtype-specific probes.

TABLE 1.

Primers used in multiplex amplification for the TMLGT assay
AmpliconPositionaGene(s)PrimerSequence (5′-3′)b
INLa455381-456505inlAinl2-a1GTCCTTGATAGTCTACTG
inl2-a2ACCAAATTAGTAATCTAGCAC
INLb457726-458752inlBinl-f1dGAATTRTTTAGYCAAGAATGT
inlb-rCTACCGGRACTTTATAGTAYG
LMO325116-326096lmo0298-lmo0300lmo-a1AAGGCTTACAAGATGGCT
lmo1a-1rAAATAATAYGTGATACCGAC
VGCa205366-206622plcA, hlyplca-fCTCATCGTATCRTGTGTACC
hly-rTCTGGAAGGTCKTGTAGGTTC
VGCb208447-209465mplra_mpl-fGTGGAYAGAACTCATAAAGG
ra_mpl-rACTCCCTCCTYGTGATASGCT
VGCc209728-211239actAvgc1a-2fTTCMATRCCAGCAGAACG
vgc1a-2rGCAGACCTAATAGCAATGTTG
Open in a separate windowaCorresponding nucleotide positions in the complete genome sequence of L. monocytogenes strain EGD-e (GenBank accession number NC_003210).bSee IUPAC codes for definition of degenerate bases.ASPE was performed in multiplex reactions including 30 probes, with each lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (ECI, ECIa, ECII, and ECIII) targeted by two different probes (Table (Table2).2). In addition, positive-control probes were included to confirm the presence of each amplicon in the multiplex PCR. As serogroups and epidemic clones are nested within a particular lineage, probes for these groups were designed to be specific within the appropriate lineage and values for these probes were evaluated only for isolates of the appropriate lineage. For example, serogroup 1/2a probes were evaluated only for isolates that were positive for lineage II probes. ASPE probes were designed with a unique 5′ sequence tag specific to individual sets of xMAP fluorescent polystyrene microspheres (Luminex Corporation) used to sort extension products. Extension and hybridization reactions were performed as described previously (9) except microspheres were twice pelleted by centrifugation (4 min at 2,250 × g) and resuspended in 75 μl 1× TM buffer prior to being pelleted and resuspended in 100 μl 1× TM buffer containing 2 μg/ml streptavidin-R-phycoerythrin (Invitrogen Life Technologies). Samples were incubated for 15 min at 37°C prior to detecting the microsphere complexes with a Luminex 100 flow cytometer (Luminex Corporation). The median fluorescence intensity (MFI) from biotinylated extension products attached to 100 microspheres was measured for each probe. The average MFI from three template-free control samples was also determined and subtracted from the raw MFI of each sample to account for background fluorescence. Probe performance was initially evaluated via the index of discrimination (ID) as described by Ducey et al. (9), and probes with ID values less than 2.0 were redesigned.

TABLE 2.

TMLGT probes and probe performance data
ProbebTarget (n)cProbe sequencedIDeSensitivity (%)Specificity (%)
VGCb-21Lineage I (506)AATCCTTTCTTTAATCTCAAATCAgcggaagcttgggaagcggtc7.3100100
VGCa-94Lineage ICTTTCTATCTTTCTACTCAATAATcaacccgatgttcttcctgtc51.7100100
VGCc-8Lineage II (340)AATCCTTTTACATTCATTACTTACattagctgattcgctttcct14.1100100
INLb-51Lineage IITCATTTCAATCAATCATCAACAATagcgccaataaagctggc21.9100100
VGCb-19Lineage III (50)TCAATCAATTACTTACTCAAATACccgctattaaaatgtactcca31.0100100
VGCb-29Lineage IIIAATCTTACTACAAATCCTTTCTTTggtataccgctattaaaatgt45.1100100
LMO-17Lineage IV (10)CTTTAATCCTTTATCACTTTATCAgaaccaaacaatgttattggt11.8100100
VGCa-27Lineage IVCTTTTCAAATCAATACTCAACTTTttaacgacggtaacgtgccac58.3100100
INLb-84Serogroup 4b (213)TCAACTAACTAATCATCTATCAATggtaaaaatatgcgaatattg9.7100100
INLb-85Serogroup 4bATACTACATCATAATCAAACATCActcgtgaacaagctttcc5.5100100
INLb-16Serogroup 1/2b (293)AATCAATCTTCATTCAAATCATCAggtaaaaatatgcgtatctta11.7100100
INLb-100Serogroup 1/2bCTATCTTTAAACTACAAATCTAACgtgaataagctatcggtctat13.0100100
LMO-42Serogroup 1/2a (268)CTATCTTCATATTTCACTATAAACtggcgttgctgrctaagtttg6.6100100
VGCb-40Serogroup 1/2aCTTTCTACATTATTCACAACATTAaatcaagcsgctcatatgaag10.410098.6
LMO-9Serogroup 1/2c (72)TAATCTTCTATATCAACATCTTACtttactggtgaaatggcg13.5100100
VGCb-5Serogroup 1/2cCAATTCAAATCACAATAATCAATCaagattacgaatcgcttccac20.898.6100
LMO-10ECI (111)ATCATACATACATACAAATCTACAatgattaaaagtcagggaaag19.0100100
LMO-28ECICTACAAACAAACAAACATTATCAAaatcgaggcttacgaacgt23.7100100
VGCc-80ECIa (44)CTAACTAACAATAATCTAACTAACactacaacgaaaacagcgc10.7100100
VGCa-35ECIaCAATTTCATCATTCATTCATTTCAgttacttttatgtcgagt9.2100100
LMO-12ECII (35)TACACTTTCTTTCTTTCTTTCTTTataccgattatttggacggtt3.8100100
LMO-30ECIITTACCTTTATACCTTTCTTTTTACgacttgtagcagttgatttcaa7.5100100
VGCc-45ECIII (10)TCATTTCACAATTCAATTACTCAActcttatttgcttttgttggtc21.110099.4
INLa-3ECIIITACACTTTATCAAATCTTACAATCgagcttaatgaaaatcagcta17.010099.4
INLa-1INLa controlCTTTAATCTCAATCAATACAAATCagaagtggaagctgggaaNAaNANA
INLb-13INLb controlCAATAAACTATACTTCTTCACTAAtgcacctaaacctccgacNANANA
LMO-88LMO controlTTACTTCACTTTCTATTTACAATCccgtttccttatgccacaNANANA
VGCa-23VGCa controlTTCAATCATTCAAATCTCAACTTTcaagycctaagacgccaatcgNANANA
VGCb-25VGCb controlCTTTTCAATTACTTCAAATCTTCAgcatgcgttagttcatgrccaNANANA
VGCc-82VGCc controlTACATACACTAATAACATACTCATgactgcatgctagaatctaagNANANA
Open in a separate windowaNA, not applicable for positive amplicon control probes.bLuminex microsphere sets (Luminex Corporation) used for hybridization reactions are indicated following the hyphen.cn, number of isolates representing the target subtype among the 906 tested isolates.dThe 5′ sequence tag portions of extension probes are capitalized. See IUPAC codes for definitions of degenerate bases.eID, index of discrimination.Validation of the TMLGT assay was performed using 906 L. monocytogenes isolates for which the lineage, major serogroup, and epidemic clone type had been determined independently (see Table S1 in the supplemental material). A subset of 92 isolates, including at least five isolates from each lineage, serogroup, and epidemic clone type, was used to evaluate the discriminatory power of subtype-specific probes and the repeatability of the assay (see Table S1). Two independent runs of the 30-probe TMLGT assay produced identical results for these 92 isolates. In addition, genotypes matched expectations for all isolate/probe combinations, and the fluorescence intensities for positive genotypes (those targeted by a particular probe) were 3.8 to 58.3 (mean, 18.5) times as high as background values for isolates with negative genotypes (those not targeted by a particular probe) (Table (Table2).2). The performances of individual probes also were assessed in terms of sensitivity and specificity, where sensitivity is defined as the percentage of positive samples that produced positive results and specificity indicates the percentage of negative samples that produce negative results (5). Based on results from all 906 isolates analyzed by TMLGT, probe sensitivity was at least 98.6% and 23 of the 24 subtype-specific probes exhibited 100% sensitivity (Table (Table2).2). The specificities for all probes were also greater than 98.6%, and 21 of the 24 subtype-specific probes exhibited 100% specificity (Table (Table22).All but three of the 906 isolates in the validation panel were fully and accurately typed relative to lineage, serogroup, and epidemic clone by using the TMLGT assay (typeability, 99.9%; accuracy of isolate assignment, 99.8%). One of the lineage II isolates, NRRL B-33880, could not be assigned to a serogroup based on the TMLGT results because this isolate was positive for one of the serogroup 1/2a probes (VGCb-40) and one of the serogroup 1/2c probes (LMO-9). This isolate was previously identified as a member of serogroup 1/2c based on mapping lineage-specific MLGT data onto a multilocus phylogeny (34) but produced a serogroup 1/2a-specific banding pattern (data not shown) with the multiplex PCR assay described by Doumith et al. (7). Similar strains, including the common laboratory strain EGD-e, were found to have genomes that are more similar to serogroup 1/2c strains than to strains from the 1/2a serogroup (8, 33) and likely represent intermediates in the evolution of the 1/2c clade from 1/2a ancestors. There is a poor correlation between genomic and antigenic variation for such isolates (34), consistent with the ambiguous results produced by application of the TMLGT assay to NRRL B-33880. The two other problematic isolates, NRRL B-33555 and NRRL B-33559, were accurately identified based on TMLGT data as lineage II isolates from the 1/2a serogroup. However, these two isolates were positive for both ECIII-specific probes in the TMLGT assay but have lineage-specific MLGT haplotypes (Lm2.46), indicating that they are representatives of a sister group closely related to ECIII (33).In 2005, the Food Safety and Inspection Service (FSIS) implemented an approach to inspection that includes consideration of relative risk in order to determine L. monocytogenes sampling frequency among establishments that produce certain RTE products. This approach incorporates information on production volume, outgrowth potential in the product, steps taken to prevent postlethality contamination, and FSIS sampling history. However, L. monocytogenes subtype-specific variation in ecology and virulence indicates that information on the lineage, major serogroup, and epidemic clone identities of isolates could be used to inform assessments of relative risk and to improve inspection programs that are based on consideration of risk. Several PCR-based methods have been described for differentiation of various combinations of these subgroups (1-3, 5, 7, 10, 35, 37); however, these approaches have focused on a single subgroup or a smaller set of subgroups than is differentiated by TMLGT analysis. Although we previously developed a set of three MLGT assays that can be used to differentiate all of the major serogroups and epidemic clones of L. monocytogenes (9, 33, 34), those assays did not include probes for lineage discrimination and require identification of the lineage prior to application of one of three unique sets of probes. In addition, the MLGT assays were designed to maximize strain discrimination, as opposed to subgroup identification, and require the use of at least twice as many probes as is needed for TMLGT analysis. MLGT data analysis is also more complicated than analysis of TMLGT data, and serogroup or epidemic clone type identification via MLGT requires phylogenetic analyses to place novel haplotypes within an established phylogenetic framework.In the present study, we developed the first assay for simultaneous discrimination of the four lineages, the four major serogroups, and the four previously described epidemic clones of L. monocytogenes. The assay includes multiple markers for each of these subtype probes as well as control probes to ensure that negative probe data were not the result of amplification failure, providing a high degree of internal validation required for use in inspection programs that consider risk in making sampling decisions. In addition, the utility of the assay has been validated with a large and diverse panel of 906 isolates, including 567 isolates from FSIS surveillance of RTE products and processing facilities (see Table S1 in the supplemental material). Data produced by the TMLGT assay are amenable to high-throughput analysis, and a simple spreadsheet utility has been developed to semiautomate subtype identifications and to alert investigators to potentially conflicting probe data (available upon request). In addition to having a potential application in inspection programs, the TMLGT assay provides a rapid and accurate means of characterizing L. monocytogenes isolates from different environments, which would facilitate pathogen tracking and improve understanding of L. monocytogenes ecology.   相似文献   

9.
At present there is little quantitative information on the identity and composition of bacterial populations in the rumen microbial community. Quantitative fluorescence in situ hybridization using newly designed oligonucleotide probes was applied to identify the microbial populations in liquid and solid fractions of rumen digesta from cows fed barley silage or grass hay diets with or without flaxseed. Bacteroidetes, Firmicutes, and Proteobacteria were abundant in both fractions, constituting 31.8 to 87.3% of the total cell numbers. They belong mainly to the order Bacteroidales (0.1 to 19.2%), hybridizing with probe BAC1080; the families Lachnospiraceae (9.3 to 25.5%) and Ruminococcaceae (5.5 to 23.8%), hybridizing with LAC435 and RUM831, respectively; and the classes Deltaproteobacteria (5.8 to 28.3%) and Gammaproteobacteria (1.2 to 8.2%). All were more abundant in the rumen communities of cows fed diets containing silage (75.2 to 87.3%) than in those of cows fed diets containing hay (31.8 to 49.5%). The addition of flaxseed reduced their abundance in the rumens of cows fed silage-based diets (to 45.2 to 58.7%) but did not change markedly their abundance in the rumens of cows fed hay-based diets (31.8 to 49.5%). Fibrolytic species, including Fibrobacter succinogenes and Ruminococcus spp., and archaeal methanogens accounted for only a small proportion (0.4 to 2.1% and 0.2 to 0.6%, respectively) of total cell numbers. Depending on diet, between 37.0 and 91.6% of microbial cells specifically hybridized with the probes used in this study, allowing them to be identified in situ. The identities of other microbial populations (8.4 to 63.0%) remain unknown.The rumen is an anaerobic ecosystem used by herbivores to convert fibrous plant material into fermentation products that are in turn used as energy by the host. Fibrolytic degradation is accomplished by a complex microbial community which includes specialized fungi, protozoa, and bacteria (14). More than 200 bacterial species (5) have been isolated from rumen, and many of these have been phylogenetically and physiologically characterized. Several of these, including Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, have the ability to hydrolyze cellulose in axenic culture (24). Despite the presence of these fibrolytic populations, a large portion of the fiber in low-quality forage diets passes through the rumen undigested. In the rumen, fibrolytic bacteria do not digest plant cell walls in isolation but rather interact with a consortium of bacteria (18). Although culture-dependent studies have improved our understanding of rumen microbiology, the importance of the isolates to the structure and function of the rumen microbial community, with the possible exception of the fibrolytic strains, is still unknown. Expanding our knowledge of the structure and function of the rumen microbial community may provide insights into approaches to improve the efficiency of fiber digestion and biofuel production (14).To provide a high-resolution view of the population structure of the rumen bacterial community, we used quantitative fluorescence in situ hybridization (qFISH) to investigate the composition and distribution of bacterial populations associated with the liquid and solid rumen contents from 12 ruminally cannulated Holstein dairy cows (3 cows were used for each diet) fed (for at least 21 days) grass hay or barley silage diets with or without flaxseed (Table (Table1).1). Six new 16S rRNA-targeted FISH probes (Table (Table2)2) for not only the fibrolytic groups but also other unclassified bacterial groups in the rumen were designed, using ARB software (17), against the rumen 16S rRNA gene sequences (data not shown) retrieved from the Ribosomal Database Project (RDP) database (6). The new probes target Bacteroidales-related clones (probe BAC1080) (phylum Bacteroidetes), Lachnospiraceae- and Ruminococcaceae-related clones (probes LAC435 and RUM831, respectively) (phylum Firmicutes), Butyrivibrio fibrisolvens-related clones (probe BFI826), and R. albus- and R. flavefaciens-related clones (probes RAL1436 and RFL155, respectively).

TABLE 1.

Composition of diets used in this study
IngredientDiet composition (% dry weight)
Hay-based dietHay and flaxseed dietSilage-based dietSilage and flaxseed diet
Alfalfa grass hay (chopped)47.547.500
Barley silage0047.547.5
Steamed rolled barley grain47.532.547.532.5
Ground flaxseeds015015
Other5555
Open in a separate window

TABLE 2.

Oligonucleotide probes and their target populations used in this study for FISH analyses
Probe nameaTarget rRNADesigned target(s)% FAbReference
EUB338 (00159)16SDomain Bacteria0-5016
EUB338II (00160)16SPhylum Planctomycetes0-5016
EUB338III (00161)16SPhylum Verrucomicrobia0-5016
NONEUB (00243)16SControl probe complementary to EUB3380-5016
ALF968 (00021)16SClass Alphaproteobacteria, phylum Proteobacteria2016
BET42a (00034)23SClass Betaproteobacteria, phylum Proteobacteria3516
GAM42a (00174)23SClass Gammaproteobacteria, phylum Proteobacteria3516
SRB385 (00300)16SClass Deltaproteobacteria, phylum Proteobacteria3516
SRB385Db (00301)16SClass Deltaproteobacteria, phylum Proteobacteria3516
HGC69a (00182)23SPhylum Actinobacteria2516
GNSB941 (00718)16SPhylum Chloroflexi3516
CFX1223 (00719)16SPhylum Chloroflexi3516
SPIRO1400 (01004)16SSubgroup of family Spirochaetaceae2016
TM7-905 (00600)16SCandidate phylum TM72016
LGC354A (00195)16SPhylum Firmicutes3516
LGC354B (00196)16SPhylum Firmicutes3516
LGC354C (00197)16SPhylum Firmicutes3516
RUM83116SRumen clones in family Ruminococcaceae, phylum Firmicutes35This study
RAL143616SRuminococcus albus-related clones, phylum Firmicutes20This study
RFL15516SRuminococcus flavefaciens-related clones, phylum Firmicutes45This study
LAC43516SClones in family Lachnospiraceae, phylum Firmicutes35This study
BFI82616SButyrivibrio fibrisolvens-related clones, phylum Firmicutes35This study
BAC108016SClones in order Bacteroidales, phylum Bacteroidetes20This study
Fibr225 (00005)16SFibrobacter succinogenes-related clones, phylum Fibrobacteres20c16
ARCH915 (00027)16SDomain Archaea2016
Open in a separate windowaThe numbers in parentheses after the probe names represent the probe accession numbers in probeBase (16).bFA, formamide concentration used in the FISH buffer.cThe optimum formamide concentration for the probe was determined in this study.The optimal formamide concentrations (OFC) of the new probes used in FISH were assessed in different ways. Probes RUM831 and BAC1080 were assessed by using pure cultures of Ruminococcus and Prevotella strains with zero and one mismatch (Fig. (Fig.1)1) to the probes. The OFC of probes LAC435 and BFI826 were assessed using Clone-FISH (21) with zero and one mismatch 16S rRNA clone (Fig. (Fig.1)1) by following the procedure described previously (9, 10). The highest formamide concentration (tested in 5% stepwise increases) at which a clear fluorescent signal was observed with the reference bacterium or competent cells with zero mismatches after FISH probing, but not with bacteria or competent cells with one mismatch, was selected. The OFC of probes FIB225 (designed by Stahl et al. [23]), RFL155, and RAL1436 were assessed using only pure cultures of F. succinogenes, R. flavefaciens, and R. albus, respectively, all having perfect matches to each probe (Fig. (Fig.1).1). The highest formamide concentration (tested in 5% stepwise increases) at which a clear fluorescent signal was observed with the reference bacterium after FISH probing was selected. These probes were employed with other available probes (Table (Table2)2) chosen from probeBase (16) based on the alignment and classification of the 16S rRNA gene sequences retrieved from rumen communities.Open in a separate windowFIG. 1.Alignments of the probe sequences and their target sites and sequences of corresponding sites in reference bacteria or clones. The probe names in parentheses after the abbreviated names are according to Oligonucleotide Probe Database nomenclature (2). Only the nucleotides that are different from target sequences are shown. E, empty space; R., Ruminococcus; P., Prevotella; F., Fibrobacter.The digest samples from the top, bottom, and middle of the rumen were collected through a cannula, thoroughly mixed, and fractioned as liquid fraction (LiqF) and solid fraction (SolF). On-site, about 100 ml was transferred to a heavy-wall 250-ml beaker and squeezed using a Bodum coffee maker plunger (Bodum Inc., Triengen, Switzerland). The extruded liquid samples (containing the planktonic cells) were fixed in ethanol and paraformaldehyde (PFA) for FISH probing (3). The remaining liquid was discarded, and the squeezed particulate samples (used to collect particulate-attached cells) were washed with 100 ml phosphate buffer (5.23 g/liter K2HPO4, 2.27 g/liter KH2PO4, 3.00 g/liter NaHCO3, and 20 ml/liter 2.5% cysteine HCl) by stirring gently with a spatula, followed by squeezing again and decanting. Washed particulate samples (5 g) were then fixed for FISH as described above.After fixation, the particulate samples plus the fixation solution were transferred into a stomacher bag and “stomached” (Stomacher 400 Circulator, Seaward England) at 230 rpm for 6 min. Treated samples were then transferred into a clean 250-ml beaker and squeezed again. Microscopic examination of the squeezed residues after DAPI (4′,6-diamidino-2-phenylindole) staining (100 μl [0.003 mg/ml] for 10 min) showed only a few bacterial cells attached on the plant fibers, indicating that most bacterial cells had been “stomached” into the liquid (data not shown). To recover cells, filtrates were centrifuged (5,000 × g), and the cell pellet was washed three times with phosphate buffer before being used for FISH probing. On the day of sampling, each cow was sampled twice, at 1100 h and 1600 h. The liquid FISH samples obtained from the 3 cows fed with the same diet (at two different sampling times) were mixed, as were the particulate FISH samples, and used in qFISH analysis. FISH was carried out according to Amann (3). FISH was carried out on glass coverslips (24 by 60 mm) coated with gelatin (9). DAPI staining of biomass samples was carried out after FISH probing. FISH and DAPI images were captured with a Zeiss epifluorescence microscope (Zeiss PM III) equipped with a Canon 5D Mark II camera. Raw images captured randomly were transferred into gray TIF images and sharpened in Adobe Photoshop CS3. Cells stained with DAPI and hybridized to the probes were enumerated using the function provided in ImageJ (1). The percent compositions of these probe-defined groups (against all DAPI-stained cells in the same microscopic field) in the different fractions of rumen contents from cows fed different diets are presented in Table Table33.

TABLE 3.

Distribution and composition of FISH probe-defined groups in rumen microbial communities in cows fed with different diets
Probe-defined microbial groupComposition (mean value [%] ± SD)a
Hay-based diet
Hay and flaxseed diet
Silage-based diet
Silage and flaxseed diet
LiqFSolFLiqFSolFLiqFSolFLiqFSolF
BAC10809.6 ± 1.330.1 ± 0.0219.2 ± 3.714.2 ± 0.7214.2 ± 3.1118.8 ± 3.8814.4 ± 2.8916.7 ± 4.33
ALF9680.2 ± 0.020.2 ± 0.020.2 ± 0.030.2 ± 0.040.7 ± 0.141.5 ± 0.410.1 ± 0.010.1 ± 0.01
BET42a000.6 ± 0.011.2 ± 0.270.1 ± 0.01<0.10.4 ± 0.060.2 ± 0.04
GAM42a3.2 ± 0.534.4 ± 0.574.2 ± 0.764.5 ± 0.672.0 ± 0.321.2 ± 0.238.2 ± 1.235.3 ± 0.95
SRBmix5.8 ± 0.8811.6 ± 2.439.0 ± 1.5210.1 ± 2.5628.3 ± 4.4323.3 ± 4.547.7 ± 0.7813.2 ± 2.22
CHLmix1.7 ± 0.2700.5 ± 0.010 ± 00.2 ± 0.020.4 ± 0.070.1 ± 0.010.1 ± 0.02
SPIRO14000.5 ± 0.091.9 ± 0.321.7 ± 0.332.0 ± 0.211.4 ± 0.311.9 ± 0.330.4 ± 0.030.4 ± 0.07
TM7-9050.6 ± 0.080.8 ± 0.070.5 ± 0.010.1 ± 0.031.5 ± 0.230.2 ± 0.020.6 ± 0.020.3 ± 0.08
HGC69a1.3 ± 0.282.1 ± 0.310.3 ± 0.060.3 ± 0.050.4 ± 0.030.1 ± 0.020.5 ± 0.090.2 ± 0.02
RUM8315.5 ± 0.135.7 ± 0.895.8 ± 0.738.9 ± 1.3218.0 ± 4.1323.8 ± 3.115.6 ± 1.147.4 ± 1.32
RAL14360.4 ± 0.060.3 ± 0.030.2 ± 0.060.2 ± 0.030.3 ± 0.050.6 ± 0.090.7 ± 0.130.6 ± 0.12
RFL1550.7 ± 0.110.2 ± 0.030.3 ± 0.070.7 ± 0.190.1 ± 0.010.8 ± 0.110.5 ± 0.061.2 ± 0.34
LAC43525.5 ± 3.9810.0 ± 1.519.6 ± 1.3111.7 ± 1.6712.6 ± 2.5620.2 ± 3.239.3 ± 1.5116.1 ± 3.31
BFI8260.3 ± 0.060.4 ± 0.050.4 ± 0.060.7 ± 0.120.5 ± 0.050.3 ± 0.082.4 ± 0.370.2 ± 0.02
Fibr225000.2 ± 0.040.1 ± 0.020.8 ± 0.140.7 ± 0.140.4 ± 0.110.1 ± 0.04
ARCH9150.3 ± 0.080.2 ± 0.070.6 ± 0.010.3 ± 0.070.6 ± 0.090.1 ± 0.020.4 ± 0.050.4 ± 0.06
Total hybridizedb54.13752.443.780.991.64860.7
Otherc45.96347.656.319.18.45239.3
Open in a separate windowaThe two numbers represent the mean value (%) and the standard deviation of individual probe-defined microbial groups in a specified rumen digest fraction, which were calculated based on 3 mean values, each consisting of 20 enumerations.bThe numbers represent the sum of percentages of all individual probe-defined microbial groups in a specified rumen digest fraction. The percentages obtained with FISH probes RAL1436, RFL155, and BFI826 were not counted in the sum because the bacterial cells hybridizing with the former two probes also hybridized with RUM831, and the bacterial cells hybridizing with the last probe also hybridized with probe LAC435.cThe numbers represent the percentages of microorganisms which were not identified by FISH in a specified rumen digest fraction.We provided quantitative data by using qFISH to show that Bacteroidetes, Firmicutes, and Proteobacteria were abundant in both the LiqF and the SolF, constituting 31.8 to 87.3% of the total cell numbers. These FISH data add weight to the view that Firmicutes and Bacteroidetes might be dominant in rumens, as suggested previously from their high ratios retrieved from 16S rRNA clone libraries (e.g., see references 12, 26, and 27). However, information emerging from 16S rRNA gene clone library data cannot be used to reach conclusions on the quantitative composition of the rumen bacterial community. Bacteria may have 1 to 14 copies of rRNA genes, and several biases are known to be associated with their PCR amplification (8).These 3 dominant bacterial groups have been identified at a high-resolution level. They belong mainly to the order Bacteroidales (0.1 to 19.2%), hybridizing with probe BAC1080 (Fig. (Fig.22 A); the families Lachnospiraceae (9.3 to 25.5%) and Ruminococcaceae (5.5 to 23.8%), hybridizing with LAC435 (Fig. (Fig.2E)2E) and RUM831 (Fig. (Fig.2D),2D), respectively; and the classes Deltaproteobacteria (5.8 to 28.3%) and Gammaproteobacteria (1.2 to 8.2%), hybridizing with SRBmix (equal moles of SRB385 and SRB385Db) (Fig. (Fig.2C)2C) and GAM42a (Fig. (Fig.2B),2B), respectively. All were more abundant in the microbial communities in the rumens of cows fed diets containing silage (75.2 to 87.3%) than in those in the rumens of cows fed diets containing hay (31.8 to 49.5%). These results show how diets containing different forages (hay or silage) may influence the distribution of the microbial populations, which is in line with data by Tajima et al. (25). We also found in this study that the addition of flaxseed (to inhibit methane emission) reduced their abundance in the rumens of cows fed silage-based diets (to 45.2 to 58.7%) but did not change markedly their abundance in the rumens of cows fed hay-based diets (31.8 to 49.5%), suggesting that adding flaxseed to these diets also affected rumen microbial community composition, although the extent of its influence reflected the forage used, being more profound with a silage-based diet than when hay was used.Open in a separate windowFIG. 2.Images of digest samples from the rumens of cows fed hay- or silage-based diets with and without flaxseed after color combination. Images from probes are labeled in red, and those from DAPI staining are in green. The yellow (combination of red and green), including those partly colored cells in panels A to F, hybridized with probes BAC1080, GAM42a, SRBmix, RUM831, LAC435, and ARCH915, respectively. A few cells (arrows) hybridizing with SRBmix (C) were not stained by DAPI. Bars, 10 μm.We also present evidence here to suggest that Proteobacteria are common members of the microbial community, with sulfur-reducing bacteria (SRB) belonging to Deltaproteobacteria in particular being readily detected (up to 28% of the total cells) in both the LiqF and the SolF of rumen contents from cows fed the four different diets examined here. SRB have seldom been retrieved in clone libraries obtained from rumen samples. Lin et al. (15) have estimated SRB abundance in the rumen using DNA hybridization and concluded that they were of minor importance (0.7 to 0.8% of the total rRNA). Our estimates are much higher than those for every diet regime examined, possibly reflecting the coverage of the probes used in the two different studies. The probe mixture SRBmix used here targets most members of the Deltaproteobacteria, while those of Lin et al. (15) covered mainly members of the Desulfobacteraceae, Desulfovibrionaceae, and Desulfobulbaceae. We also recognized that the probe mixture SRBmix perfectly matched with the 16S rRNA genes of some bacteria other than SRB in Deltaproteobacteria. The possibility of overestimation of SRB cannot be ruled out. Interestingly, our data suggest that Gammaproteobacteria were abundant in some of the rumen communities we examined by FISH, comprising 1.2 to 8.2% of total cells.The other unexpected finding was that the fibrolytic bacteria and archaeal methanogens accounted for only a minor fraction of the communities. Of the three characterized fibrolytic bacterial species, F. succinogenes was not detected in the rumen digesta from cattle fed the hay-based diet but was present in the remainder of the diets. In contrast, R. albus and R. flavefaciens were present in both the LiqF and the SolF of the rumen digesta from cows fed all four diets. Although the importance of these bacteria within the rumen microbial community cannot be denied, these three populations accounted for only 0.7 to 2.1% of the total microbial cells. This numerical range compares well with that determined previously for F. succinogenes (0.1 to 6.9% of total rRNA) (4, 23) and Ruminococcus spp. (1.5 to 2.9% of total rRNA) (11), considering that different animals and diets were used in those studies and that different specificities of the probes and different detection methods were used. However, this is much lower than the 9% (of total rRNA) detected by Michalet-Doreau et al. (19) in their work. The abundance of fibrolytic B. fibrisolvens-related species was also low, being present at <1% in all fractions, except in the LiqF in cows fed the mixture of silage and flaxseed, where they contributed 2.4% of total cells.Methanogens hybridized to ARCH915 (Fig. (Fig.2F)2F) were present (0.1 to 0.6%) in all rumen samples examined by FISH, which is close to or within the range (0.3 to 3.3%) estimated in other studies (15, 22). Interestingly, no marked difference in abundance of the methanogens could be seen between the samples from the rumens of cows fed diets with flaxseed and those from the rumens of cows fed diets without flaxseed, although it has been reported (7) that the addition of fatty acids could decrease methane production in the rumen. This may be due to the presence of methanogens with different activities in different rumen samples or the inability of probe ARCH915 to hybridize to all methanogens in the rumen samples examined here.Bacteria belonging to Chloroflexi, TM7, Spirochetes, and Actinobacteria hybridizing with CHLmix, TM7-905, SPRO1400, and HGC69a, respectively, accounted for only a minor fraction of the total cell numbers observed. In most cases, their abundances in each fraction did not change markedly with diet, always being present in small numbers (0 to 1%), suggesting that they have a minor role there. This conclusion, however, has to be confirmed since many (8.4 to 63.0%, depending on diet) of the bacteria could not be identified in the rumens of cows fed with all diets except the silage-based diet (Table (Table33).FISH with the probes designed in this study failed to identify all of the bacterial cells. This is because the probes do not target all rumen 16S rRNA gene sequences and/or the true extent of rumen biodiversity has not been revealed from cloning analyses. This indicates that our current understanding of the quantitative composition of the rumen microbial community is far from complete. Moreover, no physiological data were generated in this study to suggest what the role(s) of most of the dominant populations (except the SRB hybridized with probe SRBmix) identified by FISH might be, meaning that it is still not possible to link their abundance to their in situ function. Furthermore, each FISH-probed population probably includes bacteria with different phenotypes. Clearly, much needs to be done before the structure and function of the rumen microbial community are fully understood.FISH is a useful tool in the investigation of microbial composition in complex ecosystems (3). However, FISH probes targeting rumen bacterial populations are limited. By comparison with other culture-independent methods, e.g., quantitative PCR, FISH has several advantages (8). In particular, in combination with histochemical staining methods (20) and microautoradiography (MAR-FISH) (13), the in situ ecophysiology of a targeted population can be determined under specified electron acceptor conditions. These techniques may provide important clues as to the functional role of microbial populations within complex communities, like that of the rumen. The possession of the FISH probes described in this paper could allow such studies to be undertaken in herbivore rumens.  相似文献   

10.
Arthrobacter sp. strain JBH1 was isolated from nitroglycerin-contaminated soil by selective enrichment. Detection of transient intermediates and simultaneous adaptation studies with potential intermediates indicated that the degradation pathway involves the conversion of nitroglycerin to glycerol via 1,2-dinitroglycerin and 1-mononitroglycerin, with concomitant release of nitrite. Glycerol then serves as the source of carbon and energy.Nitroglycerin (NG) is manufactured widely for use as an explosive and a pharmaceutical vasodilator. It has been found as a contaminant in soil and groundwater (7, 9). Due to NG''s health effects as well as its highly explosive nature, NG contamination in soils and groundwater poses a concern that requires remedial action (3). Natural attenuation and in situ bioremediation have been used for remediation in soils contaminated with certain other explosives (16), but the mineralization of NG in soil and groundwater has not been reported.To date, no pure cultures able to grow on NG as the sole carbon, energy, and nitrogen source have been isolated. Accashian et al. (1) observed growth associated with the degradation of NG under aerobic conditions by a mixed culture originating from activated sludge. The use of NG as a source of nitrogen has been studied in mixed and pure cultures during growth on alternative sources of carbon and energy (3, 9, 11, 20). Under such conditions, NG undergoes a sequential denitration pathway in which NG is transformed to 1,2-dinitroglycerin (1,2DNG) or 1,3DNG followed by 1-mononitroglycerin (1MNG) or 2MNG and then glycerol, under both aerobic and anaerobic conditions (3, 6, 9, 11, 20), and the enzymes involved in denitration have been characterized in some detail (4, 8, 15, 21). Pure cultures capable of completely denitrating NG as a source of nitrogen when provided additional sources of carbon include Bacillus thuringiensis/cereus and Enterobacter agglomerans (11) and a Rhodococcus species (8, 9). Cultures capable of incomplete denitration to MNG in the presence of additional carbon sources were identified as Pseudomonas putida, Pseudomonas fluorescens (4), an Arthobacter species, a Klebsiella species (8, 9), and Agrobacterium radiobacter (20).Here we describe the isolation of bacteria able to degrade NG as the sole source of carbon, nitrogen, and energy. The inoculum for selective enrichment was soil historically contaminated with NG obtained at a facility that formerly manufactured explosives located in the northeastern United States. The enrichment medium consisted of minimal medium prepared as previously described (17) supplemented with NG (0.26 mM), which was synthesized as previously described (18). During enrichment, samples of the inoculum (optical density at 600 nm [OD600] ∼ 0.03) were diluted 1/16 in fresh enrichment medium every 2 to 3 weeks. Isolates were obtained by dilution to extinction in NG-supplemented minimal medium. Cultures were grown under aerobic conditions in minimal medium at pH 7.2 and 23°C or in tryptic soy agar (TSA; 1/4 strength).Early stages of enrichment cultures required extended incubation with lag phases of over 200 h and exhibited slow degradation of NG (less than 1 μmol substrate/mg protein/h). After a number of transfers over 8 months, the degradation rates increased substantially (2.2 μmol substrate/mg protein/h). A pure culture capable of growth on NG was identified based on 16S rRNA gene analysis (504 bp) as an Arthrobacter species with 99.5% similarity to Arthrobacter pascens (GenBank accession no. GU246730). Purity of the cultures was confirmed microscopically and by formation of a single colony type on TSA plates. 16S gene sequencing and identification were done by MIDI Labs (Newark, DE) and SeqWright DNA Technology Services (Houston, TX). The Arthrobacter cells stained primarily as Gram-negative rods with a small number of Gram-positive cocci (data not shown); Gram variability is also a characteristic of the closely related Arthrobacter globiformis (2, 19). The optimum growth temperature is 30°C, and the optimum pH is 7.2. Higher pH values were not investigated because NG begins to undergo hydrolysis above pH 7.5 (data not shown). The isolated culture can grow on glycerol, acetate, succinate, citrate, and lactate, with nitrite as the nitrogen source. Previous authors described an Arthrobacter species able to use NG as a nitrogen source in the presence of additional sources of carbon. However, only dinitroesters were formed, and complete mineralization was not achieved (9).To determine the degradation pathway, cultures of the isolated strain (5 ml of inoculum grown on NG to an OD600 of 0.3) were grown in minimal medium (100 ml) supplemented with NG at a final concentration of 0.27 mM. Inoculated bottles and abiotic controls were continuously mixed, and NG, 1,2DNG, 1,3DNG, 1MNG, 2MNG, nitrite, nitrate, CO2, total protein, and optical density were measured at appropriate intervals. Nitroesters were analyzed with an Agilent high-performance liquid chromatograph (HPLC) equipped with an LC-18 column (250 by 4.6 mm, 5 μm; Supelco) and a UV detector at a wavelength of 214 nm (13). Methanol-water (50%, vol/vol) was used as the mobile phase at a flow rate of 1 ml/min. Nitrite and nitrate were analyzed with an ion chromatograph (IC) equipped with an IonPac AS14A anion-exchange column (Dionex, CA) at a flow rate of 1 ml/min. Carbon dioxide production was measured with a Micro Oxymax respirometer (Columbus Instruments, OH), and total protein was quantified using the Micro BCA protein assay kit (Pierce Biotechnology, IL) according to manufacturer''s instructions. During the degradation of NG the 1,2DNG concentration was relatively high at 46 and 72 h (Fig. (Fig.1).1). 1,3DNG, detected only at time zero, resulted from trace impurities in the NG stock solution. Trace amounts of 1MNG appeared transiently, and trace amounts of 2MNG accumulated and did not disappear. Traces of nitrite at time zero were from the inoculum. The concentration of NG in the abiotic control did not change during the experiment (data not shown).Open in a separate windowFIG. 1.Growth of strain JBH1 on NG. ×, NG; ▵, 1,2DNG; ⋄, 1MNG; □, 2MNG; ○, protein.Results from the experiment described above were used to calculate nitrogen and carbon mass balances (Tables (Tables11 and and2).2). Nitrogen content in protein was approximated using the formula C5H7O2N (14). Because all nitrogen was accounted for throughout, we conclude that the only nitrogen-containing intermediate compounds are 1,2DNG and 1MNG, which is consistent with previous studies (6, 9, 20). The fact that most of the nitrogen was released as nitrite is consistent with previous reports of denitration catalyzed by reductase enzymes (4, 8, 21). The minor amounts of nitrate observed could be from abiotic hydrolysis (5, 12) or from oxidation of nitrite. Cultures supplemented with glycerol or other carbon sources assimilated all of the nitrite (data not shown).

TABLE 1.

Nitrogen mass balance
Time (h)% of total initial nitrogen by mass recovered ina:
Total recovery (%)
1MNG2MNG1,2DNG1,3DNGNGProteinNitriteNitrate
0NDbND0.9 ± 0.70.8 ± 0.682 ± 5.20.8 ± 0.214 ± 0.70.8 ± 0.3100 ± 5.3
460.1 ± 0.00.8 ± 0.27.9 ± 0.4ND35 ± 3.62.0 ± 0.549 ± 1.11.7 ± 0.096 ± 4.2
720.1 ± 0.00.9 ± 0.24.3 ± 4.2ND5.0 ± 0.43.3 ± 0.281 ± 4.23.9 ± 1.998 ± 6.8
94ND0.6 ± 0.4NDND0.6 ± 0.43.2 ± 0.095 ± 102.6 ± 1.6102 ± 10
Open in a separate windowaData represent averages of four replicates ± standard deviations.bND, not detected.

TABLE 2.

Carbon mass balance
Time (h)% of total initial carbon by mass recovered in:
Total recovery (%)
1MNGa2MNGa1,2DNGa1,3DNGaNGaProteinaCO2b
0NDcND1.6 ± 1.21.9 ± 0.492 ± 5.84.4 ± 0.9100 ± 8.4
460.5 ± 0.22.6 ± 0.613 ± 0.7ND39 ± 3.913 ± 3.028 ± 5.796 ± 14.1
720.4 ± 0.02.9 ± 0.77.3 ± 7.0ND5.6 ± 0.422 ± 1.259 ± 8.397 ± 17.6
94ND2.8 ± 0.3NDND0.8 ± 0.518 ± 0.371 ± 4.593 ± 5.6
Open in a separate windowaData represent averages of four replicates ± standard deviations.bData represent averages of duplicates ± standard deviations.cND, not detected.In a separate experiment cells grown on NG were added to minimal media containing 1,3DNG, 1,2DNG, 1MNG, or 2MNG and degradation over time was measured. 1,2DNG, 1,3DNG, and 1MNG were degraded at rates of 6.5, 3.8, and 8 μmol substrate/mg protein/hour. No degradation of 2MNG was detected (after 250 h), which indicates that 2MNG is not an intermediate in a productive degradation pathway. Because 1,3DNG was not observed at any point during the degradation of NG and its degradation rate is approximately one-half the degradation rate of 1,2DNG, it also seems not to be part of the main NG degradation pathway used by Arthrobacter sp. strain JBH1. The above observations indicate that the degradation pathway involves a sequential denitration of NG to 1,2DNG, 1MNG, and then glycerol, which serves as the source of carbon and energy (Fig. (Fig.2).2). The productive degradation pathway differs from that observed by previous authors using both mixed (1, 3, 6) and pure cultures (4, 9, 11, 20), in which both 1,3- and 1,2DNG were intermediates during NG transformation. Additionally, in previous studies both MNG isomers were produced regardless of the ratio of 1,2DNG to 1,3DNG (3, 4, 6, 9, 20). Our results indicate that the enzymes involved in denitration of NG in strain JBH1 are highly specific and catalyze sequential denitrations that do not involve 1,3DNG or 2MNG. Determination of how the specificity avoids misrouting of intermediates will require purification and characterization of the enzyme(s) involved.Open in a separate windowFIG. 2.Proposed NG degradation pathway.Mass balances of carbon and nitrogen were used to determine the following stoichiometric equation that describes NG mineralization by Arthrobacter sp. strain JBH1: 0.26C3H5(ONO2)3 + 0.33O2 → 0.03C5H7O2N + 0.63CO2 + 0.75NO2 + 0.75H+ + 0.17H2O. The result indicates that most of the NG molecule is being used for energy. The biomass yield is relatively low (0.057 mg protein/mg NG), with an fs (fraction of reducing equivalents of electron donor used for protein synthesis) of 0.36 (10), which is low compared to the aerobic degradation of other compounds by pure cultures, for which fs ranges between 0.4 and 0.6 (10, 14). The results are consistent with the requirement for relatively large amounts of energy during the initiation of the degradation mechanism (each denitration probably requires 1 mole of NADH or NADPH [21]).Although NG degradation rates were optimal at pH 7.2, they were still substantial at values as low as 5.1. The results suggest that NG degradation is possible even at low pH values typical of the subsurface at sites where explosives were formerly manufactured or sites where nitrite production lowers the pH.NG concentrations above 0.5 mM are inhibitory, but degradation was still observed at 1.2 mM (data not shown). The finding that NG can be inhibitory to bacteria at concentrations that are well below the solubility of the compound is consistent with those of Accashian et al. (1) for a mixed culture.The ability of Arthrobacter sp. strain JBH1 to grow on NG as the carbon and nitrogen source provides the basis for a shift in potential strategies for natural attenuation and bioremediation of NG at contaminated sites. The apparent specificity of the denitration steps raises interesting questions about the evolution of the pathway.  相似文献   

11.
12.
13.
14.
We used a mixture of surrogates (Acinetobacter baumannii, Mycobacterium terrae, hepatitis A virus, and spores of Geobacillus stearothermophilus) for bioagents in a standardized approach to test environmental surface disinfectants. Each carrier containing 10 μl of mixture received 50 μl of a test chemical or saline at 22 ± 2°C. Disinfectant efficacy criteria were ≥6 log10 reduction for the bacteria and the spores and ≥3 log10 reduction for the virus. Peracetic acid (1,000 ppm) was effective in 5 min against the two bacteria and the spores but not against the virus. Chlorine dioxide (CD; 500 and 1,000 ppm) and domestic bleach (DB; 2,500, 3,500, and 5,000 ppm) were effective in 5 min, except for sporicidal activity, which needed 20 min of contact with either 1,000 ppm of CD or the two higher concentrations of DB.Disinfectant testing with a single type of organism does not represent field conditions, where bioagents or other pathogens may be mixed with other contaminants. Such an approach also cannot predict the true spectrum of microbicidal activity of a given chemical, while the identity of the target pathogen(s) is often unknown. We used a mixture of Acinetobacter baumannii, Mycobacterium terrae (15), hepatitis A virus (HAV) (4), and the spores of Geobacillus stearothermophilus as surrogates for infectious bioagents, with an added soil load on disks (1 cm in diameter; 0.75 mm thick) of brushed stainless steel (AISI no. 430; Muzeen & Blythe, Winnipeg, MB, Canada), to better simulate environmental surface disinfection (1, 11). Table Table11 gives details on the microbial strains, media used for their culture and recovery, and methods for preparing working stocks. The quantitative carrier test (QCT) method, ASTM standard E-2197 (1), was used to test the organisms singly and in a mixture. Each 200 μl of the inoculum contained 34 μl each of the four organisms, 40 μl of bovine mucin, 14 μl of yeast extract, and 10 μl of bovine serum albumin stocks.

TABLE 1.

Organisms in the mixture and their growth/recovery media and titers
Organism (ATCC no.)Growth/recovery medium or host cell lineProcedure for culture and prepn of stockViability titer in stock
Mycobacterium terrae pBEN genetically modified in-house (ATCC 15755)Middlebrook 7H11 agar, OADC,a and kanamycin (10 μg/ml); incubation 20 days at 36 ± 1°C7H9 broth with ADCb and glycerol; cells washed and resuspended in deionized water (8 ml) in a Bijoux bottle (Wheaton, Millville, NJ) with glass beads (Sigma-Aldrich; 3 mm in diam; catalog no. Z143928) and stored at 4°C3.7 × 109 CFU/ml
Geobacillus stearothermophilus (ATCC 12980)Trypticase soy agar plates incubated at 56°C for 48 hSpores heat shocked at 100°C for 45 min, washed in deionized H2O, and stored at 4°C1.5 × 108 CFU/ml
Acinetobacter baumannii (ATCC 19606)Trypticase soy agar plates incubated at 36 ± 1°C for 24 hInoculated into Trypticase soy broth and incubated for 24 h at 36 ± 1°C, broth centrifuged, and pellet resuspended in deionized H2O and stored at 4°C1.2 × 109 CFU/ml
Hepatitis A virus (ATCC VR-1402)FRhK-4 cells (CRL-1688) infected and incubated for 6 daysCells grown in MEMc with 7% (vol/vol) fetal bovine serum (Fisher; M33-500) and 1% nonessential amino acids (Gibco; 11140) at 36 ± 1°C, monolayers infected and incubated at 36 ± 1°C for 7 days in medium with no antibiotics, flasks frozen and thawed (thrice), cell lysate centrifuged, and supernatant aliquoted for storage at −80°C8 × 108 PFU/ml
Open in a separate windowaOADC, oleic acid-albumin-dextrose-catalase.bADC, albumin dextrose-catalase.cMEM, minimal essential medium.Disinfectants tested were peracetic acid (PAA; 500 and 1,000 ppm), chlorine dioxide (CD; 500 and 1,000 ppm), and domestic bleach (DB; 2,500, 3,300, and 5,000 ppm). Buffered saline (pH 7.2) was the control fluid, eluent, and diluent. Hard water (400 ppm CaCO3) was the diluent for disinfectants (1).Each disk received 10 μl of the inoculum, dried and covered with 50 μl of test substance, or saline at 22 ± 2°C. At the end of the contact time, each disk was eluted in a neutralizer and the eluates were assayed (1, 9, 11, 12). The neutralizer consisted of 1% dextrose (Difco), 0.7% lecithin (Alfa Aesar), 0.25% sodium bisulfite (J. T. Baker), 0.1% sodium thioglycolate (Sigma), 0.6% sodium thiosulfate (Analar), 0.2% l-cysteine (Sigma), 0.5% tryptone (Oxoid), and 0.1% Tween 80 (Bioshop) in buffered saline (pH 7.2). In each experiment, three control and three test carriers were used, and all experiments were repeated thrice. The performance criteria for the tested substances were ≥3.0 log10 reduction in PFU of the virus and ≥6.0 log10 reductions in the CFU for the other three organisms. When the mixture of test organisms was used, the components were separated by first passing the mixture through a membrane filter (0.22-μm pore diameter) to retain all the organisms except the virus. The filtrate was subjected to plaque assays for HAV in FRhK-4 cells. For the three bacteria, separate filters were placed on appropriate agar plates (Table (Table1)1) and incubated.The data for 5-min contact are given in Table Table2.2. All levels of the disinfectants tested met the criterion for M. terrae and A. baumannii when tested individually or in mixture. Only 1,000 ppm of PAA was effective against the spores. Both levels of PAA were ineffective against HAV, while the other disinfectants could reduce its titer between 3.5 and 4 log10. Only 1,000 ppm of PAA could consistently meet the criterion for sporicidal activity after 10 min (data not shown). Extending the contact time to 20 min allowed both levels of PAA and DB to meet the criterion for sporicidal activity, while 500 ppm of CD failed to do so; CD at 1,000 ppm barely met the criterion when tested alone against the spores but could not do so in the mixture (Fig. (Fig.11).Open in a separate windowFIG. 1.Reductions of G. stearothermophilus spores by the test formulations after 20 min of contact, individually and in a mixture at 22 ± 2°C.

TABLE 2.

Reductions by the test formulations in 5 min at 22 ± 2°C when tested against each organism individually and in a mixture
Disinfectant (concn [ppm])Mean log10 reduction ± SD of:
M. terrae
A. baumannii
G. stearothermophilus
Hepatitis A virus
IndividualMixtureIndividualMixtureIndividualMixtureIndividualMixture
Peracetic acid (500)8.18 ± 0.197.33 ± 0.167.19 ± 0.036.33 ± 0.034.03 ± 0.084.45 ± 0.98Not tested0.30 ± 0.01
Peracetic acid (1,000)8.18 ± 0.197.33 ± 0.167.19 ± 0.036.33 ± 0.038.03 ± 0.287.21 ± 0.590.58 ± 0.220.68 ± 0.09
Chlorine dioxide (500)8.18 ± 0.197.72 ± 0.217.22 ± 0.036.37 ± 0.131.47 ± 0.450.69 ± 0.054.30 ± 0.183.97 ± 0.19
Chlorine dioxide (1,000)8.18 ± 0.197.72 ± 0.217.22 ± 0.036.37 ± 0.133.07 ± 0.091.27 ± 0.054.30 ± 0.183.97 ± 0.19
Domestic bleach (2,500)8.18 ± 0.197.72 ± 0.217.22 ± 0.036.37 ± 0.130.27 ± 0.030.25 ± 0.024.41 ± 0.233.97 ± 0.29
Domestic bleach (3,500)8.18 ± 0.197.72 ± 0.217.22 ± 0.036.37 ± 0.130.27 ± 0.030.25 ± 0.024.41 ± 0.233.45 ± 0.09
Domestic bleach (5,000)8.18 ± 0.197.72 ± 0.217.22 ± 0.036.37 ± 0.130.28 ± 0.010.25 ± 0.024.41 ± 0.233.97 ± 0.29
Open in a separate windowThe study showed the feasibility of testing liquid chemicals against a mixture of suitable surrogates for infectious bioagents. This approach allowed standardized and simultaneous assessment of the spectrum of microbicidal activities of the test formulations under identical conditions that better simulate field conditions and that can be readily adapted to test foams and gaseous chemicals on other carrier materials. The surrogates selected covered the spectrum of microbicide resistances of all currently known classes of infectious bioagents.A. baumannii is among the more environmentally stable and microbicide-resistant vegetative bacteria known (7, 13). M. terrae represented pathogens with generally higher resistance to microbicides (3) and possibly drug-resistant Mycobacterium tuberculosis and category C agents (6). HAV, a small, nonenveloped virus known for its stability and microbicide resistance (9), represented select agents (CBW, biological weapons classification, 2001 [http://www.selectagents.gov/Select%20Agents%20and%20Toxins%20List.html]) and also food- and waterborne pathogens listed as biothreats (2, 10). The spores of G. stearothermophilus may be more resistant to oxidizing chemicals than the spores of Bacillus anthracis (8); their thermophilic nature made them safer to handle and easy to separate from the mixtures.The disinfectants were selected for their commercial availability and broad-spectrum and relatively rapid action (5, 14). The last criterion excluded all but oxidizers because other common active agents are limited as microbicides and/or require hours of contact for sporicidal action.For PAA tests, the recovery of infectious HAV in the absence of any viable spores is somewhat anomalous but not surprising. While we do not believe HAV to be more resistant than bacterial spores, the small size of the virus in the dried inocula likely afforded it significant protection. Compared to HAV, the mycobacterium proved more susceptible to all the disinfectants tested. This highlights a serious weakness in the traditional rankings of disinfectant susceptibility, where mycobacteria are often considered more resistant than nonenveloped viruses (5, 14).In the initial trials with the mixtures, the titer of A. baumannii dropped sharply; using virus pools without antibiotics resolved the issue. The ability of A. baumannii to grow on 7H11 agar and thus interfere with the recovery of M. terrae was addressed by replacing the standard strain of M. terrae with one containing a kanamycin resistance gene (15). Incorporation of enough kanamycin in 7H11 suppressed the growth of A. baumannii while allowing the mycobacterium to grow.Using a mixture of surrogates in QCT not only proved feasible but also highlighted the need to review certain long-held concepts about the relative sensitivities of classes of pathogens to disinfectants. The details reported should allow extension of the work to CL-3 and possibly CL-4 agents to confirm that the results obtained with the carefully chosen surrogates are indeed applicable to various classes of infectious bioagents.  相似文献   

15.
16.
Angiostrongylus cantonensis is the most common cause of human eosinophilic meningitis. Humans become infected by ingesting food items contaminated with third-stage larvae that develop in mollusks. We report the development of a real-time PCR assay for the species-specific identification of A. cantonensis in mollusk tissue.Angiostrongylus cantonensis is the most common agent associated with eosinophilic meningitis in humans. Young adult worms develop in the brains of rodents and are carried to pulmonary arteries to reach sexual maturity. Eggs are laid in lung tissues, and first-stage (L1) larvae break into air spaces, migrate to the trachea, are swallowed, and are passed with rodent feces. The L1 larvae must infect mollusks to develop into third-stage (L3) larvae; L3 is the infective stage for rodents and other mammals. Humans become infected by ingesting raw produce contaminated with L3 larvae or infected raw or undercooked mollusks or paratenic hosts. The immature worms remain in the human brain, creating tissue damage and inflammation (2, 19, 21).A. cantonensis is endemic in Southeast Asia, parts of the Caribbean, and the Pacific Islands, including Hawaii (7, 12, 15-17). The worm has been detected in host animals in Louisiana (5, 14) and in one human patient from New Orleans (18), but it is currently unclear to what extent the nematode has spread into other U.S. states (8, 9). Ascertaining the geographic presence of the parasite is important to manage and prevent new cases of eosinophilic meningitis associated with ingestion of infective larvae (12, 18).Detection of A. cantonensis in mollusks can be performed by releasing the larvae from the tissue with pepsin digestion (11). However, that procedure requires access to living mollusks, which complicates analysis of large numbers of samples. After a recent outbreak of angiostrongyliasis in Hawaii (12), we developed a conventional PCR assay and applied it to survey the Hawaiian mollusk population using frozen tissue (20). That PCR assay, as well as morphological identification using pepsin digestion, can only identify the larvae on the superfamily level, so additional molecular work is required for species-specific classification. Here we describe a new real-time PCR assay that allows for a direct detection of A. cantonensis at the species level.The 18S rRNA gene is too conserved among nematode species to allow species-specific detection. The first and second internal transcribed spacers (ITS1 and ITS2) are comparatively more variable than the rRNA coding regions and have thus been used for differentiation of closely related species (1, 4, 6, 10, 22, 23). We PCR amplified and sequenced ITS1 from A. costaricensis (two laboratory strains from Costa Rica and Brazil), A. vasorum (from naturally infected hosts in United Kingdom), and A. cantonensis from three geographical regions (one laboratory strain from Japan plus nine environmental isolates from Hawaii and New Orleans, LA) to assess the variability of this potential PCR target. The oligonucleotide primers used were AngioF1674 (5′-GTCGTAACAAGGTATCTGTAGGTG-3′) and 58SR4 (5′-TAGCTGCGTTTTTCATCGATA-3′). The reaction mixtures contained 0.4 μM each primer and AmpliTaq Gold PCR master mix (Applied Biosystems, Foster City, CA) and were cycled 45 times at 94°C for 30 s, 65°C for 30 s, and 72°C for 1 min. PCR products were cloned into pCR2.1 vectors using the TOPO cloning technique (Invitrogen, Carlsbad, CA) and sequenced on both strands as described elsewhere (20).The sequence analysis revealed high interspecific and low intraspecific variability. A TaqMan assay targeting ITS1 was then designed using Primer Express version 2.3 (Applied Biosystems, Foster City, CA). The real-time PCR assay was performed in a 20-μl total volume containing Platinum qPCR Supermix (Invitrogen, Carlsbad, CA), 0.2 μM (each) primers AcanITS1F1 (5′-TTCATGGATGGCGAACTGATAG-3′) and AcanITS1R1 (5′-GCGCCCATTGAAACATTATACTT-3′), and 0.05 μM the TaqMan probe AcanITS1P1 (5′-6-carboxyfluorescein-ATCGCATATCTACTATACGCATGTGACACCTG-BHQ-3′). The standard cycling conditions for TaqMan assays were used (i.e., 40 cycles of 95°C for 15 s and 60°C for 1 min).We evaluated the real-time PCR assay with a set of 26 Parmarion martensi slugs from Hawaii. Seventeen slugs were positive for L3 larvae as determined by pepsin digestion, and nine slugs were negative. DNA was extracted from approximately 25 mg of tissue of each slug using the DNeasy tissue and blood DNA extraction kit (Qiagen, Inc., Valencia, CA). The real-time PCR performed on this set of samples returned an identical result to the morphological analysis. The real-time PCR amplified only DNA from A. cantonensis and did not react with DNA from other nematode species (Table (Table1).1). The detection limit of the assay was determined by serially diluting a recombinant plasmid containing the ITS1 sequence to less than 1 copy per μl of sample. The real-time PCR reliably detected down to 10 plasmid copies in the reaction.

TABLE 1.

Comparison of conventional and real-time PCR for detection of Angiostrongylus cantonensis in mollusks and nematode samples
Biological origin of DNA sampleGeographic originNo. of samples testedNo. of samples positive by:
18S rRNA-based conventional PCRITS1-based TaqMan PCR
Parmarion martensiHawaii1127583
Veronicella cubensisHawaii5023a22
Laevicaulis alteHawaii534
Achatina fulicaHawaii645
Other/unidentified mollusksHawaii1645
FlatwormsHawaii222
Slime from infected slugsHawaii1311
Pomacea insularumLouisiana3155
A. costaricensisBrazil, Costa Rica22b0
A. vasorumUnited Kingdom22b0
Other nematodescCDC collection1400
Total253121127
Open in a separate windowaThis number includes three samples positive by PCR but later identified as non-Angiostrongylus nematodes by DNA sequencing analysis of the amplicons (20). These three samples were negative in the real-time PCR assay.bThe conventional PCR detects other Angiostrongylus species besides A. cantonensis.cTwo stool samples containing Strongyloides worms, eight environmental samples containing unclassified free-living nematodes and one of each of the following parasitic nematodes: Dipetalonema sp., Toxocara cati, Dracunculus medinensis, and Ascaris lumbricoides.The real-time PCR assay was then used to analyze a larger set of naturally infected host animals from Hawaii, partly described elsewhere (13, 20), and Island Apple snails (Pomacea insularum) from New Orleans, LA. All samples had previously been characterized by the conventional PCR followed by DNA sequencing analysis (20).Table Table11 summarizes the PCR findings and highlights the enhanced performance of the real-time PCR in comparison to the conventional PCR. In addition, the real-time PCR assay was more practical to use since it did not require DNA sequence confirmation to rule out false positives.The findings from Island Apple snails from New Orleans infected with A. cantonensis concur with previous reports about the potential for angiostrongyliasis transmission in this area (5, 14). Another interesting finding was the positive PCR results in two samples of flatworms from Hawaii. Predatory flatworms that ingest infected mollusks are known to be paratenic hosts of A. cantonensis and have been suspected to be an important source of infection for humans in Japan because they hide in leafy vegetables (3).In conclusion, this real-time PCR assay can be a useful tool for environmental surveys of local wildlife to determine the geographic distribution of this reemerging human parasite.  相似文献   

17.
Presented here is the first report describing the detection of potentially diarrheal Vibrio parahaemolyticus strains isolated from cultured bivalves on the Mediterranean coast, providing data on the presence of both tdh- and trh-positive isolates. Potentially diarrheal V. parahaemolyticus strains were isolated from four species of bivalves collected from both bays of the Ebro delta, Spain.Gastroenteritis caused by Vibrio parahaemolyticus has been reported worldwide, though only sporadic cases have been reported in Europe (7, 14). The bacterium can be naturally present in seafood, but pathogenic isolates capable of inducing gastroenteritis in humans are rare in environmental samples (2 to 3%) (15) and are often not detected (10, 19, 20).The virulence of V. parahaemolyticus is based on the presence of a thermostable direct hemolysin (tdh) and/or the thermostable direct hemolysin-related gene (trh) (1, 5). Both are associated with gastrointestinal illnesses (2, 9).Spain is not only the second-largest producer in the world of live bivalve molluscs but also one of the largest consumers of bivalve molluscs, and Catalonia is the second-most important bivalve producer of the Spanish Autonomous Regions. Currently, the cultivation of bivalves in this area is concentrated in the delta region of the Ebro River. The risk of potentially pathogenic Vibrio spp. in products placed on the market is not assessed by existing legislative indices of food safety in the European Union, which emphasizes the need for a better knowledge of the prevalence of diarrheal vibrios in seafood products. The aim of this study was to investigate the distribution and pathogenic potential of V. parahaemolyticus in bivalve species exploited in the bays of the Ebro delta.Thirty animals of each species of Mytilus galloprovincialis, Crassostrea gigas, Ruditapes decussatus, and Ruditapes philippinarum were collected. They were sampled from six sites of the culture area, three in each bay of the Ebro River delta, at the beginning (40°37′112"N, 0°37′092"E [Alfacs]; 40°46′723"N, 0°43′943"E [Fangar]), middle (40°37′125"N, 0°38′570"E [Alfacs]; 40°46′666"N, 0°45′855"E [Fangar]), and end (40°37′309"N, 0°39′934"E [Alfacs]; 40°46′338"N, 0°44′941"E [Fangar]) of the culture polygon. Clams were sampled from only one site per bay as follows: in the Alfacs Bay from a natural bed of R. decussatus (40°37′44"N, 0°38′0"E) and in the Fangar Bay from an aquaculture bed of R. philippinarum (40°47′3"N, 0°43′8"E). In total, 367 samples were analyzed in 2006 (180 oysters, 127 mussels, 30 carpet shell clams, and 30 Manila clams) and 417 samples were analyzed in 2008 (178 oysters, 179 mussels, 30 carpet shell clams, and 30 Manila clams).All animals were individually processed and homogenized, and 1 ml of the homogenate was inoculated into 9 ml of alkaline peptone water (Scharlau, Spain). Following a 6-h incubation at 37°C, one loopful of the contents of each tube of alkaline peptone water was streaked onto CHROMagar vibrio plates (CHROMagar, France) and incubated for 18 h at 37°C. Mauve-purple colonies were purified, and each purified isolate was cryopreserved at −80°C (135 isolates in 2006 and 96 in 2008). From the initial homogenate portion, 100 μl was inoculated onto marine agar (Scharlau, Spain) and onto thiosulfate citrate-bile salts-sucrose agar (Scharlau, Spain) for total heterotrophic marine bacteria counts and total vibrio counts, respectively (Table (Table11).

TABLE 1.

Vibrio parahaemolyticus isolates, serotypes, and origins and total number of vibrios/heterotrophic bacteria contained in the bivalvea
IsolateDate of collectionOrganism and site of originTemp (°C)Salinity (‰)Gene(s)SerotypeBacterial count using indicated medium (CFU ml−1)
TCBS agarMarine agar
I7458 August 2006Mg-F24.537tdhND1.5 × 1041.2 × 104
I79314 August 2006Cg-A2535tdhND9.2 × 1028.5 × 103
I80514 August 2006Cg-A2535tdhO2:KUT7.2 × 1029 × 103
I80614 August 2006Cg-A2535tdh and trhO3:K331.9 × 1034.6 × 103
I80914 August 2006Cg-A2535tdhO2:K288 × 1047.3 × 102
I6784 July 2006Rd-A28.636tdhO2:K283.1 × 1052.5 × 105
I6284 July 2006Rd-A28.636tdhO4:KUT2.9 × 1048.4 × 104
I7758 August 2006Cg-A24.537tdhND4.21 × 1031.1 × 104
I6914 July 2006Rd-A28.636trhO1:K322.2 × 1052.6 × 105
I71227 July 2006Mg-A29.435.5trhO1:KUT8.6 × 1038.4 × 103
I7658 August 2006Cg-F24.537trhO4:K341 × 104Uncountable
I98022 July 2008Cg-A26.733.5tdhO1:K322.7 × 1041.3 × 104
I98122 July 2008Cg-A26.733.5trhO1:KUT1 × 1042.2 × 104
I99322 July 2008Cg-A26.733.5tdhO5:K173 × 1031.1 × 104
I99429 July 2008Mg-A27.737trhO3:KUT3.4 × 1037 × 103
I10315 August 2008Cg-F27.737tdhO5:KUT5.5 × 1043.3 × 104
I10345 August 2008Cg-F27.737tdhO3:KUT8.7 × 1044 × 104
I10405 August 2008Cg-F27.737tdhO3:KUT1.6 × 1043.2 × 104
I10425 August 2008Cg-F27.737tdh and trhND2.8 ×1043 × 104
I10505 August 2008Cg-F27.737tdhO1:KUT4.7 × 1047.3 × 104
I106320 August 2008Mg-F25.936tdhO3:KUT7.9 ×1041.4 × 104
I106520 August 2008Mg-F25.936tdhO2:KUT2.2 × 1031.2 × 104
I106820 August 2008Mg-F25.936tdhO5:KUT2.6 × 1045.2 × 104
I106920 August 2008Mg-F25.936tdhO3:KUT2.4 × 1035.3 × 104
I107320 August 2008Mg-F25.936tdhO5:KUT2.3 × 1037.5 × 103
I107420 August 2008Mg-F25.936tdhO3:KUT7.6 × 1046.9 × 104
I107720 August 2008Mg-F25.936tdhO4:KUT1.7 × 1031.6 × 103
I107920 August 2008Mg-F25.936trhO3:KUT2.5 × 1031.1 × 104
I109220 August 2008Mg-F25.936tdhND1.7 × 1031.6 × 103
I113025 August 2008Rd-A26.435tdhND1.7 × 1043.8 × 104
I114325 August 2008Rd-A26.435tdhND1.1 × 1041.9 × 104
I116525 August 2008Rd-A26.435trhO2:KUT4.4 × 1046.8 × 104
I113325 August 2008Rp-F25.536.5tdhND3.4 × 1044 × 104
I113425 August 2008Rp-F25.536.5tdhND3.9 × 1045.8 × 104
I115825 August 2008Rp-F25.536.5trhO4:KUT6.6 × 1044.7 × 104
I116125 August 2008Rp-F25.536.5trhO3:KUT2.2 × 1046.6 × 104
Open in a separate windowaMg, Mytilus galloprovincialis; Cg, Crassostrea gigas; Rd, Ruditapes decussatus; Rp, R. phillipinarum; A, Alfacs; F, Fangar; ND, not determined; TCBS, thiosulfate citrate-bile salts-sucrose.Total DNA was extracted from each purified isolate using the Wizard genomic DNA purification kit (Promega), following the instructions of the manufacturer. A one-step PCR analysis was performed to identify/confirm which isolates were tl positive (species marker for V. parahaemolyticus). Further detection of the tdh or trh gene was carried out on all positive tl strains. All PCR analyses were carried out using the primers described by Bej et al. (2) with the following amplification conditions on the thermocycler (Eppendorf Mastercycler Personal): an initial denaturation at 95°C for 8 min, followed by 40 cycles of a 1-min denaturation at 94°C, annealing at 55°C for 1 min, elongation at 72° for 1 min, and a final extension of 10 min at 72°C. Positive and negative controls were included in all reaction mixtures: two positive controls, tl and tdh CAIM 1400 and trh CAIM 1772 (Collection of Aquatic Important Microorganisms [http://www.ciad.mx/caim/CAIM.html]), and negative control DNA-free molecular grade water (Sigma-Aldrich, Spain). Expected amplicons were visualized in 2% agarose gels stained with ethidium bromide.Fifty-eight isolates contained the gene tl in 2006 and 96 in 2008, which confirmed their identity as V. parahaemolyticus. In 2006, the distribution of the 58 isolates was as follows: 7 from 127 mussels, 34 from 180 oysters, and 17 from 30 R. decussatus clams. No tl-positive isolates were found in R. philippinarum. PCR analysis of the tl-positive isolates for the presence of the tdh or trh gene indicated that eight isolates contained the tdh gene and four contained the trh gene. In 2008, the source of the confirmed V. parahaemolyticus isolates was as follows: 31 from 88 oysters, 44 from 89 mussels, 9 from 30 R. decussatus clams, and 12 from 30 R. philippinarum clams. Of these, 17 were found to contain the tdh gene and 7 contained the trh gene. Two isolates (I806 and I1042) contained both toxigenic genes, tdh and trh.Putative tdh- and trh-positive PCR products were purified using the QIAquick PCR purification kit (Qiagen) following the manufacturer''s instructions and were sequenced bidirectionally by Macrogen Inc. Sequences were aligned using BioEdit (8) and analyzed using BLAST (National Center for Biotechnology Information). None of the toxigenic isolates was found positive by PCR analysis for the presence of open reading frame 8 of the phage 237 (16), a marker for the pandemic strain O3:K6.The isolates were fingerprinted by repetitive extragenic palindromic PCR (rep-PCR) as described previously (3), and the resulting electrophoretic band patterns were analyzed with the GelCompar II software (v4.5; Applied Maths). The similarity matrix was calculated with the Jaccard coefficient with a band position tolerance of 0.8%, and the dendrogram was constructed with the Ward algorithm. A high level of genomic diversity was found among the 32 toxigenic isolates characterized by rep-PCR. Three clonal groups were identified (those having identical rep-PCR band patterns) (Fig. 1a to c).Open in a separate windowFIG. 1.rep-PCR dendrogram of toxigenic isolates of V. parahaemolyticus isolated in the Ebro delta. Letters denote clonal groups of isolates.In vitro antibiotic susceptibility tests were performed using the diffusion disc test following a previously described protocol (18). The antibiotics used were gentamicin (10 μg), oxolinic acid (10 μg), amoxicillin (25 μg), polymyxin B (300 UI), vancomycin (30 μg), trimethoprim sulfamethoxazole (1.25/23.75 μg), nitrofurantoin (300 μg), doxycyclin (30 μg), ceftazidime (30 μg), streptomycin (10 μg), neomycin (30 UI), penicillin (6 μg), flumequine (30 μg), tetracycline (30 μg), ampicillin (10 μg), kanamycin (30 μg), ciprofloxacin (5 μg), and sulfonamide (300 μg). All tests were performed in duplicate. A Student t test for two samples with unequal variance was performed to compare the sensitivity of all 2006 isolates against the sensitivity of 2008 isolates for each antibiotic (Microsoft Office Excel 97-2003). Antibiogram results revealed a lower susceptibility in 2008 than in 2006, indicating a possible shift in overall susceptibility. Results from the t test indicated that significantly lower susceptibility in 2008 was detected (P ≤ 0.05; n = 36) for the following antibiotics: vancomycin, polymyxin B, ampicillin, amoxicillin, gentamicin, neomycin, trimethoprim sulfamethoxazole, nitrofurantoin, doxycyclin, ceftazidime, tetracycline, flumequine, and ciprofloxacin.The serological types for 27 strains were determined by the agglutination method using commercially available V. parahaemolyticus antisera (Denka Seiken Ltd.; Cosmos Biomedical Ltd, United Kingdom) following the manufacturer''s instructions. Potentially toxigenic V. parahaemolyticus isolates collected in 2006 were serologically heterogeneous (8 out of the 11 isolates) (Table (Table1).1). In isolates collected in 2008, results were more homogenous, with seven serotypes found among 19 isolates analyzed. The O3:K6 serotype was not detected in any of the strains analyzed, in agreement with the open reading frame 8 PCR results.The present study is the first to report the detection of potentially diarrheal V. parahaemolyticus strains isolated from cultured bivalves on Spanish Mediterranean coasts, providing data on the presence of both tdh- and trh-positive isolates. V. parahaemolyticus has previously been detected in several European countries (4, 13, 21, 22). A recent study carried out in Spain detected tdh-positive V. parahaemolyticus strains from patients who had consumed fresh oysters in a market in Galicia on the Atlantic coast of Spain (12) and potentially pathogenic V. parahaemolyticus strains have also been reported in France (17). These studies indicate that the risk of infections caused by V. parahaemolyticus in Europe is low compared to that in America or Asia (15). However, this risk could have been underestimated, since V. parahaemolyticus is not included in the current European surveillance programs, such as the European Network for Epidemiological Surveillance and Control of Communicable Diseases.Toxigenic V. parahaemolyticus strains detected in this study were genomically and serologically heterogeneous. The pandemic serotype O3:K6 was not detected, and although attempts to isolate O3:K6 from the environment and from seafood have not always been successful in previous studies reviewed by Nair and coauthors (15), this finding seems to be in agreement with the fact that no outbreak of diarrhea was observed in the area. Interestingly, isolates I806 and I1042 have been found positive for both tdh and trh in PCR tests. The coexistence of tdh and trh genes has already been reported in isolates from Japan, the United States, and Mexico (3, 6, 11, 19, 23). To our knowledge, no occurrence of an environmental isolate positive for both tdh and trh had previously been reported in Europe. All isolates tested were slightly different in their antibiotic resistance profiles. Typically, a high level of resistance could be determined. The detection of tdh- and/or trh-positive V. parahaemolyticus strains for the first time on the Mediterranean coast emphasizes the need to monitor for the presence of potentially diarrheal vibrios and bacterial gastroenteritis, and these data should be taken into consideration to revise the European legislation on the requirements for shellfish harvested for consumption in order to include the surveillance of these pathogens in Europe.  相似文献   

18.
The three-dimensional structure of adeno-associated virus (AAV) serotype 6 (AAV6) was determined using cryo-electron microscopy and image reconstruction and using X-ray crystallography to 9.7- and 3.0-Å resolution, respectively. The AAV6 capsid contains a highly conserved, eight-stranded (βB to βI) β-barrel core and large loop regions between the strands which form the capsid surface, as observed in other AAV structures. The loops show conformational variation compared to other AAVs, consistent with previous reports that amino acids in these loop regions are involved in differentiating AAV receptor binding, transduction efficiency, and antigenicity properties. Toward structure-function annotation of AAV6 with respect to its unique dual glycan receptor (heparan sulfate and sialic acid) utilization for cellular recognition, and its enhanced lung epithelial transduction compared to other AAVs, the capsid structure was compared to that of AAV1, which binds sialic acid and differs from AAV6 in only 6 out of 736 amino acids. Five of these residues are located at or close to the icosahedral 3-fold axis of the capsid, thereby identifying this region as imparting important functions, such as receptor attachment and transduction phenotype. Two of the five observed amino acids are located in the capsid interior, suggesting that differential AAV infection properties are also controlled by postentry intracellular events. Density ordered inside the capsid, under the 3-fold axis in a previously reported, conserved AAV DNA binding pocket, was modeled as a nucleotide and a base, further implicating this capsid region in AAV genome recognition and/or stabilization.Adeno-associated viruses (AAVs) are nonpathogenic single-stranded DNA (ssDNA) parvoviruses that belong to the Dependovirus genus and require helper viruses, such as Adenovirus or Herpesvirus, for lytic infection (4, 8, 22, 67). These viruses package a genome of ∼4.7 kb inside an icosahedral capsid (∼260 Å in diameter) with a triangulation number equal to 1 assembled from a total of 60 copies of their overlapping capsid viral protein (VP) 1 (VP1), VP2, and VP3 in a predicted ratio of 1:1:8/10 (10). The VPs are encoded from a cap open reading frame (ORF). VP3 is 61 kDa and constitutes 90% of the capsid''s protein composition. The less abundant VPs, VP1 (87 kDa) and VP2 (73 kDa), share the same C-terminal amino acid sequence with VP3 but have additional N-terminal sequences. A rep ORF codes for four overlapping proteins required for replication and DNA packaging.To date, more than 100 AAV isolates have been identified (21). Among the human and nonhuman primate AAVs isolated, 12 serotypes (AAV serotype 1 [AAV1] to AAV12) have been described and are classified into six phylogenetic clades on the basis of their VP sequences and antigenic reactivities, with AAV4 and AAV5 considered to be clonal isolates (21). AAV1 and AAV6, which represent clade A, differ by only 6 out of 736 VP1 amino acids (5 amino acids within VP3) and are antigenically cross-reactive. Other clade representatives include AAV2 (clade B), AAV2-AAV3 hybrid (clade C), AAV7 (clade D), AAV8 (clade E), and AAV9 (clade F) (21).The AAVs are under development as clinical gene delivery vectors (e.g., see references 5, 9, 12, 13, 24, 25, 53, and 61), with AAV2, the prototype member of the genus, being the most extensively studied serotype for this application. AAV2 has been successfully used to treat several disorders, but its broad tissue tropism makes it less effective for tissue-specific applications and the prevalence of preexisting neutralizing antibodies in the human population (11, 43) limits its utilization, especially when readministration is required to achieve a therapeutic outcome. Efforts have thus focused on characterizing the capsid-associated tissue tropism and transduction properties conferred by the capsid of representative serotypes of other clades (21). Outcomes of these studies include the observation that AAV1 and AAV6, for example, transduce liver, muscle, and airway epithelial cells more efficiently (e.g., up to 200-fold) than AAV2 (27, 28, 30). In addition, the six residues (Table (Table1)1) that differ between the VPs of AAV1 and AAV6 (a natural recombinant of AAV1 and AAV2 [56]) confer functional disparity between these two viruses. For example, AAV6 shows ∼3-fold higher lung cell epithelium transduction than AAV1 (27), and AAV1 and AAV6 bind terminally sialylated proteoglycans as their primary receptor, whereas AAV6 additionally binds to heparan sulfate (HS) proteoglycans with moderate affinity (70, 71). Therefore, a comparison of the AAV1 and AAV6 serotypes and, in particular, their capsid structures can help pinpoint the capsid regions that confer differences in cellular recognition and tissue transduction.

TABLE 1.

Amino acid differences between AAV1 and AAV6 and their reported mutants
AAVAmino acid at positiona:
Glycan targetbReference
129418531532584598642
AAV1LEEDFANS70
AAV1-E/KLEKDFANHS+ (and S)c70
AAV6FDKDLVHHS and S70
AAV6.1FDEDLVHHS (and S)c40, 70
AAV6.2LDKDLVHHS (and S)c40, 70
AAV6R2LDEDLVHHS (and S)c40
HAE1LEEDLVN(HS and S)d39
HAE2LDKDLVN(HS and S)d39
shH10FDKNLVNHS (and S-inde)33
Open in a separate windowaMutant residues in boldface have an AAV6 parental original; those underlined have an AAV1 parental origin.bS, sialic acid; HS, heparan sulfate; HS+, HS positive.cThe sialic acid binding phenotypes of these mutants were not discussed in the respective publications but are assumed to be still present.dThe glycan targets for these mutants were not discussed in this publication; thus, the phenotypes indicated are assumed.eThis mutant is sialic acid independent (S-ind) for cellular transduction.The structures of AAV1 to AAV5 and AAV8 have been determined by X-ray crystallography and/or cryo-electron microscopy and image reconstruction (cryo-EM) (23, 36, 47, 52, 66, 73; unpublished data), and preliminary characterization of crystals has also been reported for AAV1, AAV5, AAV7, and AAV9 (15, 45, 46, 55). The capsid VP structures contain a conserved eight-stranded (βB to βI) β-barrel core and large loop regions between the strands that form the capsid surface. The capsid surface is characterized by depressions at the icosahedral 2-fold axes of symmetry, finger-like projections surrounding the 3-fold axes, and canyon-like depressions surrounding the 5-fold axes. A total of nine variable regions (VRs; VRI to VRIX) were defined when the two most disparate structures, AAV2 and AAV4, were compared (23). The VRs contain amino acids that contribute to slight differences in surface topologies and distinct functional phenotypes, such as in receptor binding, transduction efficiency, and antigenic reactivity (10, 23, 37, 47).The structure of virus-like particles (VLPs) of AAV6, produced in a baculovirus/Sf9 insect cell expression system, has been determined by two highly complementary approaches, cryo-EM and X-ray crystallography. The AAV6 VP structure contains the general features already described for the AAVs and has conformational differences in the VRs compared to the VRs of other AAVs. The 9.7-Å-resolution cryoreconstructed structure enabled the localization of the C-α positions of five of the six amino acids that differ between highly homologous AAV6 and AAV1 but did not provide information on the positions of the side chains or their orientations. The X-ray crystal structure determined to 3.0-Å resolution enabled us to precisely map the atomic positions of these five residues at or close to the icosahedral 3-fold axes of the capsid. Reported mutagenesis and biochemical studies had functionally annotated the six residues differing between AAV1 and AAV6 with respect to their roles in receptor attachment and differential cellular transduction. Their disposition identifies the 3-fold capsid region as playing essential roles in AAV infection.  相似文献   

19.
A total of 210 Salmonella isolates, representing 64 different serovars, were isolated from imported seafood samples, and 55/210 isolates were found to be resistant to at least one antibiotic. Class 1 integrons from three multidrug-resistant Salmonella enterica strains (Salmonella enterica serovars Newport [strain 62], Typhimurium var. Copenhagen [strain 629], and Lansing [strain 803], originating from Hong Kong, the Philippines, and Taiwan, respectively) were characterized. Southern hybridization of plasmids isolated from these strains, using a class 1 integron probe, showed that trimethoprim-sulfamethoxazole and streptomycin resistance genes were located on a megaplasmid in strain 629. Our study indicates that imported seafood could be a reservoir for Salmonella isolates resistant to multiple antibiotics.Salmonella spp. are recognized as major food-borne pathogens of humans worldwide. In the United States, there are an estimated 800,000 to 4 million Salmonella infections annually, and approximately 500 of the cases are fatal (8, 26). A variety of foods have been implicated as vehicles transmitting salmonellosis to humans, including poultry, beef, pork, eggs, milk, cheese, fish, shellfish, fruits, juice, and vegetables (1, 4, 9, 12, 23). Previous studies by field laboratories of the U.S. Food and Drug Administration have shown the prevalences of Salmonella isolates in imported and domestic seafood as 7.2% and 1.3%, respectively (6, 11, 27).Mobile genetic elements, such as plasmids, transposons, and integrons, which disseminate antibiotic resistance genes by horizontal or vertical transfer, as part of either resistance plasmids or conjugative transposons, play an important role in the evolution and dissemination of multidrug resistance (2, 3, 10, 17). Salmonella genomic island 1 (SGI1), the first genomic island reported to contain an antibiotic resistance gene cluster, was identified in the multidrug-resistant Salmonella enterica serovar Typhimurium strain DT 104 (21).Most studies of the prevalence and characterization of antimicrobial resistance genes and integrons in Salmonella spp. have focused on strains from clinical and veterinary sources. However, little is known about the occurrence of SGI1 and its variants in Salmonella spp. isolated from seafood. We have screened a set of drug-resistant S. enterica strains from seafood belonging to 64 different serovars for SGI1 and class 1 integron conserved sequences (CS). We report the presence of a class I variant integron carrying the dfrXII and aadA2 genes on a megaplasmid in serovar Typhimurium var. Copenhagen and on the chromosome in Salmonella enterica serovar Lansing. We also found the variant class 1 integron carrying the dfrA1 and orfC genes in Salmonella enterica serovar Newport strains from seafood.A total of 210 Salmonella enterica strains isolated from seafood imported into the United States between 2000 and 2005 were identified and serotyped by the Pacific Regional Laboratory-Southwest of the FDA, Irvine, CA. The Salmonella strains represented 20 serogroups (Table (Table1)1) from various imported seafood items. The Salmonella strains were tested with 16 antibiotics (14) commonly used in either human or veterinary medicine on Mueller-Hinton agar (Difco Laboratories, Detroit, MI), using a disk diffusion method. The sensitivity and resistance were determined by the criteria of the Clinical and Laboratory Standards Institute (1999).

TABLE 1.

Salmonella serotypes isolated from imported foods
No. of strainsS. enterica serovar(s) or Salmonella group(s)
39Weltevreden
16Newport
13Saintpaul
10Senftenberg
8Lexington
7Virchow
6Enteritidis, Bareily
5Bovismorbificans, Brunei, Java, Hvittingfoss
4Paratyphi B var. Java, Thompson
3Aberdeen, Cubana, Stanley, Derby, Lansing
2Montevideo, Hadar, Agona, San Diego, Braenderup, Lanka, Salmonella enterica subsp. diarizonae, Oslo, Bareily variant, Salmonella monophasic group C2
1Ouakam, Cannstatt, Albany, Newport/Bardo, Adelaide, S. enterica subsp. diarizonae, Houten, Giza, Miami, Onderstepoof, Infantis, Salmonella monophasic group D1, Mbandaka, Salmonella monophasic group G2, Ohio, Rutgers, Salmonella monophasic group D2, Amsterdam, Salmonella enterica subsp. IV serotype 43:z4z23, Paratyphi B var. Java, Wentworth, Potsdam, Muenster var. 15+, 34+, Lexington var. 15+, Weltevreden var. 15+, S. enterica subsp. I, Madella, Alachua, London, Singapore, Uphill, Thielallee, Typhimurium var. Copenhagen
Open in a separate windowAll Salmonella strains that were resistant to three or four antibiotics and trimethoprim were screened by PCR for the presence of class 1 integrons, using the CSL1 and CSR1 primers (Table (Table2)2) (14). To confirm other antibiotic resistance genes, we used primers and PCR methods described previously (13, 14, 16). To identify SGI1 in multidrug-resistant strains, PCR was performed by using primers U7-L12/LJ-R1 and 104-RJ/104-D (Table (Table2),2), corresponding to the left and right junctions of SGI1 in the Salmonella chromosome, respectively (16). For a positive control, serovar Typhimurium DT104 strain DT7 (13) was used. As a negative control, Escherichia coli cells or DNA was used. A reagent blank included in each PCR contained distilled water instead of template DNA. For sequencing, the PCR-amplified integrons were purified and cloned into plasmid vector pCR2.1 (Invitrogen Corp., Carlsbad, CA). The clones were investigated for the presence of inserts by isolating the recombinant plasmid, which was confirmed by digestion with the restriction enzyme EcoRI. Sequencing of both strands was performed. DNA sequences were analyzed with Lasergene (DNASTAR, Inc., Madison, WI) software. Oligonucleotide primers and probes were purchased from MWG Biotech (High Point, NC).

TABLE 2.

Primer pairs for integron PCR and sequencing
PrimerSequence (5′-3′)LocationPCR product size (bp)
CSL1GGC ATC CAA GCA GCA AGC5′ CS
CSR1AAG CAG ACT TGA CCT GAT3′ CS
U7-L12ACA CCT TGA GCA GGG CAA AGthdF500
LJ-R1AGT TCT AAA GGT TCG TAG TCG
104-RJTGA CGA GCT GAA GCG AAT TGS044
104DACC AGG GCA AAA CTA CAC AGyidY
aadA2FTGT TGG TTA CTG TGG CCG TAaadA2380
aadA2RGCT GCG AGT TCC ATA GCT TC
Open in a separate windowPlasmid DNA was isolated using an alkaline lysis method with modifications described previously (19). Plasmids were separated by electrophoresis in 1× Tris-acetate-EDTA buffer at 64 V for 2 h on 1.0% agarose gels, stained with 40 μl of ethidium bromide (0.625 mg/ml) for visualization, and then transferred and cross-linked to positively charged nylon membranes (Roche, Indianapolis, IN). The resulting blots were hybridized at 65°C for 18 h with digoxigenin-labeled DNA probes (1.2-kb and 1.9-kb PCR-amplified products), using CSL1 and CSR1 primers specific for class 1 integrons (22).  相似文献   

20.
The presence of Campylobacter spp. was investigated in 41 Antarctic fur seals (Arctocephalus gazella) and 9 Weddell seals (Leptonychotes weddellii) at Deception Island, Antarctica. Infections were encountered in six Antarctic fur seals. The isolates, the first reported from marine mammals in the Antarctic region, were identified as Campylobacter insulaenigrae and Campylobacter lari.The Antarctic and sub-Antarctic regions are often regarded as pristine landscapes, unaffected by human activity. A limited number of surveys have been carried out to investigate the possible occurrence of zoonotic enteropathogens and if certain bacteria could be used as tools for evaluating biological pollution in this area (4, 11). In the case of Campylobacter species, there have been only three reports in the literature, but in all of them Campylobacter was isolated from marine seabirds but not from marine mammals. Campylobacter jejuni was isolated in Antarctic and sub-Antarctic areas from Macaroni penguins (Eudyptes chrysolophus) (4), and Campylobacter lari was isolated from Brown skuas, South Polar skuas, and Adelie penguins (2, 11).Reports of Campylobacter species isolated from marine mammals are rare. Campylobacter insulaenigrae was isolated from three harbor seals (Phoca vitulina) and a harbor porpoise (Phocoena phocoena) in Scotland (7). The isolation of C. jejuni, C. lari, and an unknown Campylobacter species from juvenile northern elephant seals (Mirounga angustirostris) in California was also reported (22). Finally, 71 isolates of C. insulaenigrae and 1 isolate similar to but distinct from both Campylobacter upsaliensis and Campylobacter helveticus were isolated from northern elephant seals in California (23). In the South Georgia Archipelago, fecal swabs were taken from 206 Antarctic fur seal pups, but no isolates could be obtained (4). In this study, we successfully isolated C. lari from 7.3% of Antarctic fur seals (Arctocephalus gazella) sampled and C. insulaenigrae from a further 7.3%. On the other hand, Campylobacter was not detected in the nine Weddell seals (Leptonychotes weddellii) sampled. To our knowledge, this is the first report on the isolation of C. lari and C. insulaenigrae from marine mammals in the Antarctic region.Fieldwork was conducted at Deception Island (latitude of 62°58′S and longitude of 60°40′W), in the South Shetland Islands. During January to February 2007, Antarctic fur seals (Arctocephalus gazella) and Weddell seals (Leptonychotes weddellii) were captured and fecal samples were collected by insertion of sterile cotton wool swabs into the rectum of the marine mammals. A total of 41 Antarctic fur seals and 9 Weddell seals were sampled. The distribution by ages was of 7 adults (over 4 years of age with breeding activity), 19 subadults (2 to 4 years of age), and 15 juvenile Antarctic fur seals (less than 2 years of age), and 8 adult Weddell seals and 1 juvenile. All animals presented a good body condition and showed no symptoms at the time of sampling.Three swabs were taken from each animal and were placed in FBP medium (8) with 0.5% active charcoal (Sigma Ltd.), Amies transport medium with charcoal, and Cary Blair transport medium, respectively. All samples were kept at +4 to 8°C until culture in the lab. The number of days between sampling and cultivation varied from 96 to 124 days, with a median value of 105 days.Each swab was placed in 10 ml of Campylobacter enrichment broth (Lab M) with 5% laked horse blood and CAT supplement (cefoperazone [8 μg/ml], teicoplanin [4 μg/ml], and amphotericin B [10 μg/ml]) at 37°C. The broth was incubated at 37°C for 48 h and 5 days in 3.5-liter anaerobic containers using CampyGen sachets (Oxoid), before an aliquot of 100 μl was plated onto CAT agar and the plates were incubated at 37°C for 72 h in a microaerobic atmosphere. In addition, a 47-mm-diameter cellulose membrane with 0.60-μm pores was placed on the surface of an anaerobe agar base (Oxoid) with 5% laked horse blood. Eight to 10 drops of enrichment broth (200 μl) were placed onto the surface of the membrane. The membrane was left for 20 to 30 min on the agar surface at room temperature until all of the fluid had passed through (20). The plates were incubated as described above, but for 5 days to isolate the less common, slower growing species.Isolates were examined by dark-field microscopy to determine morphology and motility and tested to determine whether oxidase was produced. For each sample, five isolates from each of the solid media that had typical morphology and motility and for which the oxidase test was positive were frozen at −80°C in FBP medium (8) until they were tested by phenotypic and genotypic methods.Original Campylobacter identification was done by Gram staining, catalase activity, hippurate hydrolysis, ability to hydrolyze indoxyl acetate, urease activity, H2S production on triple-sugar iron slants, growth at 25°C and 42°C in a microaerophilc environment, growth at 37°C in an aerobic atmosphere, and agglutination with Microscreen latex (Microgen, Camberley, United Kingdom).No differences between the strains were observed in any of the phenotypic tests used. All isolates showed a Gram-negative, slender, curved, seagull wing-like morphology under light microscopy and positive reactions in the catalase test. They were negative for hippurate and indoxyl acetate hydrolysis and urease and did not show H2S production. In addition, they grew at 42°C but did not grow at 25°C or 37°C in an aerobic atmosphere. Finally, all of them were positive in the agglutination test.Because phenotypic results commonly lead to misidentification of Campylobacter species, it is recommended that a molecular method be included in the identification scheme for Campylobacter (5, 15). Identification of the isolates was performed using 16S rRNA gene PCR and sequence analysis (15, 21). Forward and reverse conserved 16S rRNA eubacterial primers 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′) were used to amplify the 16S rRNA according to the protocol described by Jang et al. (9). Forward and reverse sequencing reactions were performed by the Laboratorio Central de Veterinaria''s DNA sequencing facility (LCV Algete, Madrid, Spain). Three strains were identified as C. lari and the other three as C. insulaenigrae based on both forward and reverse sequence analysis.Molecular characterization of strains was carried out using a combination of pulsed-field gel electrophoresis (PFGE) using KpnI enzyme and multilocus sequence typing (MLST). Preparation of intact Campylobacter DNA for PFGE was performed following the Pulsenet protocol (17, 24). PFGE for the restriction enzyme KpnI (Takara, Conda, Spain) was performed following the protocol described by Ribot et al. (17). DNA fragments were resolved on 0.9% Seakem Gold agarose gels (Iberlabo, Spain) with a Bio-Rad CHEF DRIII system (Bio-Rad, Spain) at 14°C and 6 V/cm. Electrophoresis was carried out for 22 h with pulse times ramping from 4 s to 20 s. The fingerprinting experiments were analyzed using the InfoQuest FP software (Bio-Rad, Spain), and the dendrogram was constructed using the unweighted-pair group method using average linkages (UPGMA).MLST of C. lari strains was performed as described by Miller et al. (13). In the case of C. insulaenigrae strains, MLST was performed following the protocol described by Stoddard et al. (23). All amplicons were sequenced by the Sequencing Service of the Instituto de Salud Carlos III (Madrid, Spain). Sequence data were collated, and alleles were assigned using the Campylobacter PubMLST database (http://pubmlst.org/campylobacter/). Novel alleles and sequence types were submitted for allele and sequence type (ST) designations when appropriate.Regarding the age distribution of animals, C. lari was isolated from 1 of 7 adult (14.3%), 1 of 19 subadult (5.3%), and 1 of 15 juvenile (6.6%) Antarctic fur seals. C. insulaenigrae was isolated from 1 of 7 adults (14.3%) and 2 of 19 of subadults (10.5%) but not from juvenile animals (Table (Table1).1). All strains were obtained from the swabs kept in FBP transport medium.

TABLE 1.

Source of Campylobacter isolates
AnimalAge category and sexDate (mo/day/yr) of:
Campylobacter sp. and isolate no.
SamplingCulture
L 06/56Adult male2/15/075/30/07C. insulaenigrae FR-07
L 06/78Subadult male2/15/075/30/07C. insulaenigrae FR-15
L 06/102Subadult male2/22/075/30/07C. lari FR-28
L 06/134Juvenile male2/21/075/30/07C. lari FR-36
L 06/146Subadult male2/22/075/30/07C. insulaenigrae FR-38
L 06/48Adult male2/22/075/30/07C. lari FR-48
Open in a separate windowCampylobacter is very sensitive to excessive amounts of oxygen and has little capacity to survive in the environment. It is therefore possible that the prevalence of Campylobacter species in Antarctic fur seals is greater than that obtained in our survey and that we have isolated more-resistant strains with a larger ability to survive a prolonged transport. Nevertheless, we think that the freezing medium described by Gorman and Adley (8) modified by the addition of 0.5% of activated charcoal is a very good transport medium since the bacteria remained viable for 3 months at refrigeration temperature, whereas they did not survive in the transport media routinely used for the preservation of fecal samples such as Amies and Cary Blair media.PFGE is a useful tool for conducting epidemiological studies of Campylobacter species. We used digestion with KpnI because it has been reported to have greater power of discrimination than digestion with SmaI (16). All isolates showed very different patterns (Fig. (Fig.1),1), indicating different sources of infection and circulation of different clones on Deception Island. These data were confirmed by the results of MLST, in which each strain belonged to a different ST, none of which had been previously reported. We submitted to the MLST database 12 new sequences of alleles tested for C. insulaenigrae and 10 new sequences of C. lari obtained (Table (Table22).Open in a separate windowFIG. 1.UPGMA dendrogram of PFGE profiles.

TABLE 2.

Alelle numbers and sequence types of Campylobacter isolates
Species and isolate no.STAllele no.a
aspA or adkatpAglnAglyApgipgmtkt
C. insulaenigrae
    FR-7412 (aspA)16*12*215*15*11*
    FR-15424 (aspA)1011*12*14*15*12*
    FR-38437 (aspA)17*11*13*14*313*
C. lari
    FR-281752* (adk)57*250*56*51*31*
    FR-361652* (adk)57*2256*52*31*
    FR-481853* (adk)58*1257*52*32*
Open in a separate windowaAsterisks indicate new alleles.The introduction of C. lari in the Antarctic fur seal colonies may have occurred through seabirds. C. lari has been isolated from Adelie penguins (Pygoscelis adeliae), kelp gull (Larus dominicanus), Brown skuas (Stercorarius antarctica lonnbergi), and South Polar skuas (Stercorarius maccormicki) in Hope Bay (11) and in the Antarctic Peninsula (2). Gulls can travel between South America and Antarctica and are potential carriers of enteric pathogens (1). Thus, C. lari has been isolated from kelp gulls in southern Chile (6). Also, South Polar skuas have been reported in Greenland and the Aleutian Islands and Brown skuas move around the Antarctic coast. Therefore, it is possible that these birds acquire infectious organisms when they move to areas with high levels of human activity. These birds have been reported on Deception Island (10), and it is common to find skuas and giant petrels on beaches where Antarctic fur seal colonies rest. The carrier birds could eliminate Campylobacter and pollute these areas. Alternatively, these birds could be occasional prey for Antarctic fur seals.C. insulaenigrae is a new Campylobacter species whose host range might be restricted to marine mammals (23). It could be hypothesized that C. insulaenigrae evolved from C. lari based on the presence of both species in sea lions and their sharing other characteristics such as the absence of the citrate synthase gene (23). In addition, considering that C. insulaenigrae has not been isolated from seabirds or shellfish and the migration ranges of sea lions are generally not very large, Antarctic fur seals could have been initially infected with C. lari, and subsequently this species has evolved, adapting to mammals. Alternatively both species could share an ancestor and have adapted to different hosts.The Antarctic fur seals captured showed no weight loss, diarrhea, or other symptoms at the time of sampling. However, due to the nature of our study, it is not possible to know whether the animal had been ill before the time of collection and was subsequently a carrier. Taking into account previous reports (7, 23) and our results, pinnipeds could possibly act as reservoir of C. insulaenigrae.The presence of Campylobacter in Antarctic fur seals could also be important due to the zoonotic potential of both species (5, 12, 18, 19). Therefore, researchers should continue to exercise caution when working with these animals. In addition, C. lari has been involved in waterborne outbreaks (3) and some reports have identified this species as the most frequently isolated from surface water (25). Most of the Antarctic stations'' catchwater from lakes generated by meltwater and the water treatment cannot be accomplished by chemical products to prevent marine pollution. In general, water is not treated or is treated only by filtration and UV light. Antarctic fur seals can nevertheless pollute the water of these lakes and/or infect other species such as penguins and other birds, which in turn could also act as a source of infection for humans. Furthermore, Obiri-Danso et al. (14) have reported that C. lari survives for longer in surface waters than C. jejuni and Campylobacter coli, so it would have a greater chance of surviving the water treatment. Finally, in case of infection, the therapy may be complicated because in many of the stations there are only basic medical services.In summary, we describe here the first isolation and characterization of two species of Campylobacter, C. lari and C. insulaenigrae, from Antarctic fur seals. Further studies are needed to determine the prevalence of Campylobacter spp. in Antarctic pinnipeds, the possible sources of infection and if the presence of Campylobacter in marine mammals could be a risk for human illness or could be a result of microbial pollution associated with human activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号