首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to obtain information about conformational changes of the plasma membrane Ca2+-pump (PMCA) in the membrane region upon interaction with Ca2+, calmodulin (CaM) and acidic phospholipids. To this end, we have quantified labeling of PMCA with the photoactivatable phosphatidylcholine analog [125I]TID-PC/16, measuring the shift of conformation E2 to the auto-inhibited conformation E1I and to the activated E1A state, titrating the effect of Ca2+ under different conditions. Using a similar approach, we also determined the CaM-PMCA dissociation constant. The results indicate that the PMCA possesses a high affinity site for Ca2+ regardless of the presence or absence of activators. Modulation of pump activity is exerted through the C-terminal domain, which induces an apparent auto-inhibited conformation for Ca2+ transport but does not modify the affinity for Ca2+ at the transmembrane domain. The C-terminal domain is affected by CaM and CaM-like treatments driving the auto-inhibited conformation E1I to the activated E1A conformation and thus modulating the transport of Ca2+. This is reflected in the different apparent constants for Ca2+ in the absence of CaM (calculated by Ca2+-ATPase activity) that sharply contrast with the lack of variation of the affinity for the Ca2+ site at equilibrium. This is the first time that equilibrium constants for the dissociation of Ca2+ and CaM ligands from PMCA complexes are measured through the change of transmembrane conformations of the pump. The data further suggest that the transmembrane domain of the PMCA undergoes major rearrangements resulting in altered lipid accessibility upon Ca2+ binding and activation.  相似文献   

2.
The aim of this work was to study the plasma membrane calcium pump (PMCA) reaction cycle by characterizing conformational changes associated with calcium, ATP, and vanadate binding to purified PMCA. This was accomplished by studying the exposure of PMCA to surrounding phospholipids by measuring the incorporation of the photoactivatable phosphatidylcholine analog 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine to the protein. ATP could bind to the different vanadate-bound states of the enzyme either in the presence or in the absence of Ca2+ with high apparent affinity. Conformational movements of the ATP binding domain were determined using the fluorescent analog 2′(3′)-O-(2,4,6-trinitrophenyl)adenosine 5′-triphosphate. To assess the conformational behavior of the Ca2+ binding domain, we also studied the occlusion of Ca2+, both in the presence and in the absence of ATP and with or without vanadate. Results show the existence of occluded species in the presence of vanadate and/or ATP. This allowed the development of a model that describes the transport of Ca2+ and its relation with ATP hydrolysis. This is the first approach that uses a conformational study to describe the PMCA P-type ATPase reaction cycle, adding important features to the classical E1-E2 model devised using kinetics methodology only.  相似文献   

3.
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a.  相似文献   

4.
The transport of calcium to the extracellular space carried out by plasma membrane Ca2+ pumps (PMCAs) is essential for maintaining low Ca2+ concentrations in the cytosol of eukaryotic cells. The activity of PMCAs is controlled by autoinhibition. Autoinhibition is relieved by the binding of Ca2+-calmodulin to the calmodulin-binding autoinhibitory sequence, which in the human PMCA is located in the C-terminal segment and results in a PMCA of high maximal velocity of transport and high affinity for Ca2+. Autoinhibition involves the intramolecular interaction between the autoinhibitory domain and a not well defined region of the molecule near the catalytic site. Here we show that the fusion of GFP to the C terminus of the h4xb PMCA causes partial loss of autoinhibition by specifically increasing the Vmax. Mutation of residue Glu99 to Lys in the cytosolic portion of the M1 transmembrane helix at the other end of the molecule brought the Vmax of the h4xb PMCA to near that of the calmodulin-activated enzyme without increasing the apparent affinity for Ca2+. Altogether, the results suggest that the autoinhibitory interaction of the extreme C-terminal segment of the h4 PMCA is disturbed by changes of negatively charged residues of the N-terminal region. This would be consistent with a recently proposed model of an autoinhibited form of the plant ACA8 pump, although some differences are noted.  相似文献   

5.
N6-2-(4-aminophenyl)ethyladenosine (APNEA) is a nonselective adenosine receptor agonist known to have a high affinity for the adenosine A1 and A3 receptors. It was found to be able to dose-dependently increase the sustained (4 min) Ca2+ influx into rat cortical synaptosomes while 2-chloro-N6-(3-iodobenzyl)-adenosine-5-N-methyluronamide (Cl-IB-MECA), a selective A3 agonist has no effect. However, this effect of APNEA was not affected by the presence of 8-cyclopentyl-l,3-dimethylxanthine (CPT), a selective A1 antagonist; but instead completely abolished by 8-(3-chlorostyryl)caffeine (CSC), a selective A2a antagonist, or -conotoxin GVIA. These results show that in the rat cortex, presynaptic A2a receptors can mediate neurotransmitter release by increasing Ca2+ influx through the N-type calcium channels. A1 and A3 receptors appear not to be involved.  相似文献   

6.
NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca2+ content and PI3K signaling.  相似文献   

7.
In NCX proteins CBD1 and CBD2 domains are connected through a short linker (3 or 4 amino acids) forming a regulatory tandem (CBD12). Only three of the six CBD12 Ca2+-binding sites contribute to NCX regulation. Two of them are located on CBD1 (Kd = ∼0.2 μm), and one is on CBD2 (Kd = ∼5 μm). Here we analyze how the intrinsic properties of individual regulatory sites are affected by linker-dependent interactions in CBD12 (AD splice variant). The three sites of CBD12 and CBD1 + CBD2 have comparable Kd values but differ dramatically in their Ca2+ dissociation kinetics. CBD12 exhibits multiphasic kinetics for the dissociation of three Ca2+ ions (kr = 280 s−1, kf = 7 s−1, and ks = 0.4 s−1), whereas the dissociation of two Ca2+ ions from CBD1 (kf = 16 s−1) and one Ca2+ ion from CBD2 (kr = 125 s−1) is monophasic. Insertion of seven alanines into the linker (CBD12–7Ala) abolishes slow dissociation of Ca2+, whereas the kinetic and equilibrium properties of three Ca2+ sites of CBD12–7Ala and CBD1 + CBD2 are similar. Therefore, the linker-dependent interactions in CBD12 decelerate the Ca2+ on/off kinetics at a specific CBD1 site by 50–80-fold, thereby representing Ca2+ “occlusion” at CBD12. Notably, the kinetic and equilibrium properties of the remaining two sites of CBD12 are “linker-independent,” so their intrinsic properties are preserved in CBD12. In conclusion, the dynamic properties of three sites are specifically modified, conserved, diversified, and integrated by the linker in CBD12, thereby generating a wide range dynamic sensor.  相似文献   

8.
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.  相似文献   

9.
Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent l-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and l-Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The heterocommunication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events.  相似文献   

10.
Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca2+). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca2+-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel''s activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca2+ and PIP2 in regulating BK channel activity. In the absence of Ca2+, RCK1 structural elements limit channel activation through a decrease in the channel''s PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca2+ coordination site (Asp367 or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys392 and Arg393) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca2+, the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca2+ engaging Asp367. Our results demonstrate that, along with Ca2+ and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.  相似文献   

11.
The cytosolic (group IV) phospholipase A2 (cPLA2s) family contains six members. We have prepared recombinant proteins for human α, mouse β, human γ, human δ, human ϵ, and mouse ζ cPLA2s and have studied their interfacial kinetic and binding properties in vitro. Mouse cPLA2β action on phosphatidylcholine vesicles is activated by anionic phosphoinositides and cardiolipin but displays a requirement for Ca2+ only in the presence of cardiolipin. This activation pattern is explained by the effects of anionic phospholipids and Ca2+ on the interfacial binding of mouse cPLA2β and its C2 domain to vesicles. Ca2+-dependent binding of mouse cPLA2β to cardiolipin-containing vesicles requires a patch of basic residues near the Ca2+-binding surface loops of the C2 domain, but binding to phosphoinositide-containing vesicles does not depend on any specific cluster of basic residues. Human cPLA2δ also displays Ca2+- and cardiolipin-enhanced interfacial binding and activity. The lysophospholipase, phospholipase A1, and phospholipase A2 activities of the full set of mammalian cPLA2s were quantified. The relative level of these activities is very different among the isoforms, and human cPLA2δ stands out as having relatively high phospholipase A1 activity. We also tested the susceptibility of all cPLA2 family members to a panel of previously reported inhibitors of human cPLA2α and analogs of these compounds. This led to the discovery of a potent and selective inhibitor of mouse cPLA2β. These in vitro studies help determine the regulation and function of the cPLA2 family members.  相似文献   

12.
Activity of voltage-gated Cav1.3 L-type Ca2+ channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V.  相似文献   

13.
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh3)] (MPd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H2L1a and H2L1b, and benzoylacetone, H2L2a and H2L2b. The new complexes [Pt(L1a)(PPh3)] (1), [Pd(L1a)(PPh3)] (2), [Pt(L1b)(PPh3)] (3), [Pd(L1b)(PPh3)] (4), [Pt(L2a)(PPh3)] (5), [Pd(L2a)(PPh3)] (6), [Pt(L2b)(PPh3)] (7) and [Pd(L2b)(PPh3)] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR (1H and 31P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H2L1a and H2L1b ligands, H2L2a and H2L2b assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H2L1a and H2L1b, deprotonated and in O,N,S-tridentate mode to the (MPPh3)2+ moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC50 values ranging from 7.8 to 18.7 μM, while the ligand H2L2a presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole.  相似文献   

14.
Five alditol analogs 1b1f of a novel glycolipid acremomannolipin A (1a), the potential Ca2+ signal modulator isolated from Acremonium strictum, were synthesized by employing a stereoselective β-mannosylation of appropriately protected mannose with five hexitols with different stereochemistry, and their potential on modulating Ca2+ signaling were evaluated. All these analogs were more potent compared to the original compound 1a, and proved that mannitol stereochemistry of 1a was not critical for the potent calcium signal modulating.  相似文献   

15.
The gastric H+ + K+ ATPase is a member of the phosphorylating class of transport ATPase. Based on sequence homologies and CHO content, there may be ab subunit associated with the catalytic subunit of the H+ + K+ ATPase. Its function, if present, is unknown. The pump catalyzes a stoichiometric exchange of H+ for K+, but is also able to transport Na+ in the forward direction. This suggests that the transport step involves hydronium rather than protons. The initial binding site is likely to contain a histidine residue to account for the high affinity of the cellular site. The extracellular site probably lacks this histidine, so that a low affinity for hydronium allows release into a solution of pH 0.8. Labelling with positively charge, luminally reactive reagents that block ATPase and pump activity has shown that a region containing H5 and H6 and the intervening luminal loop is involved in necessary conformational changes for normal pump activity. The calculated structure of this loop shows the presence of ana helical,b turn, andb strand sector, with negative charges close to the membrane domain. This sector provides a possible site of interaction of drugs with the H+ + K+ ATPase, and may be part of the K+ pathway in the enzyme.Emory University, Atlanta, Georgia.  相似文献   

16.
Mutations in the CACNA1A gene, which encodes the pore-forming α1A subunit of the CaV2.1 voltage-gated calcium channel, cause a number of human neurologic diseases including familial hemiplegic migraine. We have analyzed the functional impact of the E1015K amino acid substitution located in the “synprint” domain of the α1A subunit. This variant was identified in two families with hemiplegic migraine and in one patient with migraine with aura. The wild type (WT) and the E1015K forms of the GFP-tagged α1A subunit were expressed in cultured hippocampal neurons and HEK cells to understand the role of the variant in the transport activity and physiology of CaV2.1. The E1015K variant does not alter CaV2.1 protein expression, and its transport to the cell surface and synaptic terminals is similar to that observed for WT channels. Electrophysiological data demonstrated that E1015K channels have increased current density and significantly altered inactivation properties compared with WT. Furthermore, the SNARE proteins syntaxin 1A and SNAP-25 were unable to modulate voltage-dependent inactivation of E1015K channels. Overall, our findings describe a genetic variant in the synprint site of the CaV2.1 channel which is characterized by a gain-of-function and associated with both hemiplegic migraine and migraine with aura in patients.  相似文献   

17.
Adenosine A2a receptor (A2aR) colocalizes with dopamine D2 receptor (D2R) in the basal ganglia and modulates D2R-mediated dopaminergic activities. A2aR and D2R couple to stimulatory and inhibitory G proteins, respectively. Their opposing roles in regulating neuronal activities, such as locomotion and alcohol consumption, are mediated by their opposite actions on adenylate cyclase, which often serves as “co-incidence detector” of various activators. On the other hand, the neural actions of A2aR and D2R are also, at least partially, independent of each other, as indicated by studies using D2R and A2aR knock-out mice. Here we co-expressed human A2aR and human D2LR in CHO cells and examined their signaling characteristics. Human A2aR desensitized rapidly upon agonist stimulation. A2aR activity (80%) was diminished after 2 hr of pretreatment with its agonist CGS21680. In contrast, human D2LR activity was sustained even after 2 hr and 18 hr pretreatment with its agonist quinpirole. Long-term (18 hr) stimulation of human D2LR also increased basal cAMP levels in CHO cells, whereas long-term (18 hr) activation of human A2aR did not affect basal cAMP levels. Furthermore, long-term (18 hr) activation of D2LR dramatically sensitized A2aR-induced stimulation of adenylate cyclase in a pertussis toxin-sensitive way. Forskolin-induced cAMP accumulation was significantly increased after short-term (2 hr) human D2LR stimulation and further elevated after long-term (18 hr) D2LR activation. However, neither short-term (2 hr) nor long-term (18 hr) stimulation of A2aR affected the inhibitory effects of D2LR on adenylate cyclase. Co-stimulation of A2aR and D2LR could not induce desensitization or sensitization of D2LR either. In summary, signaling t hrough A2aR and D2LR is distinctive and synergistic, supporting their unique and yet integrative roles in regulating neuronal functions when both receptors are present.  相似文献   

18.
The effect of a domain peptide DPCPVTc from the central region of the RYR2 on ryanodine receptors from rat heart has been examined in planar lipid bilayers. At a zero holding potential and at 8 mmol L?1 luminal Ca2+ concentration, DPCPVTc induced concentrationdependent activation of the ryanodine receptor that led up to 20-fold increase of PO at saturating DPCPVTc concentrations. DPCPVTc prolonged RyR2 openings and increased RyR2 opening frequency. At all peptide concentrations the channels displayed large variability in open probability, open time and frequency of openings. With increasing peptide concentration, the fraction of high open probability records increased together with their open time. The closed times of neither low- nor high-open probability records depended on peptide concentration. The concentration dependence of all gating parameters had EC50 of 20 μmol L?1 and a Hill slope of 2. Comparison of the effects of DPCPVTc with the effects of ATP and cytosolic Ca2+ suggests that activation does not involve luminal feed-through and is not caused by modulation of the cytosolic activation A-site. The data suggest that although “domain unzipping” by DPCPVTc occurs in both modes of RyR activity, it affects RyR gating only when the channel resides in the H-mode of activity.  相似文献   

19.
The role of the antiapoptotic protein Bcl-xL in regulating mitochondrial Ca2+ ([Ca2+]mito) handling was examined in wild-type (WT) and Bcl-xL knock-out (Bcl-xL-KO) mouse embryonic fibroblast cells. Inositol 1,4,5-trisphosphate-generating agonist evoked cytosolic Ca2+ transients that produced a larger [Ca2+]mito uptake in WT cells compared with Bcl-xL-KO. In permeabilized cells, stepping external [Ca2+] from 0 to 3 μm also produced a larger [Ca2+]mito uptake in WT; moreover, the [Ca2+]mito uptake capacity of Bcl-xL-KO cells was restored by re-expression of mitochondrially targeted Bcl-xL. Bcl-xL enhancement of [Ca2+]mito uptake persisted after dissipation of the mitochondrial membrane potential but was absent in mitoplasts lacking an outer mitochondrial membrane. The outer membrane-localized voltage-dependent anion channel (VDAC) is a known Ca2+ permeability pathway that directly interacts with Bcl-xL. Bcl-xL interacted with VDAC1 and -3 isoforms, and peptides based on the VDAC sequence disrupted Bcl-xL binding. Peptides reduced [Ca2+]mito uptake in WT but were without effect in Bcl-xL-KO cells. In addition, peptides reduced [Ca2+]mito uptake in VDAC1 and VDAC3 knock-out but not VDAC1 and -3 double knock-out mouse embryonic fibroblast cells, confirming that Bcl-xL interacts functionally with VDAC1 and -3 but not VDAC2. Thus, an interaction between Bcl-xL and VDAC promotes matrix Ca2+ accumulation by increasing Ca2+ transfer across the outer mitochondrial membrane.  相似文献   

20.
The lipid requirement of the (Ca2+ + Mg2+)-stimulated ATPase of human erythrocytes has been studied. The enzyme activity was lost after removal of the phospholipids using phospholipase A2 from Naja naja and serum albumin. Optimal restoration of the (Ca2+ + Mg2+)-ATPase activity in the partially lipid-depleted membranes was obtained with oleate. The reactivation was not due to the removal of a permeability barrier for ATP, since lysolecithin or cholate did not show latent activity. Reactivation was also obtained with several negatively charged phospholipids. Among the ones normally found in the erythrocyte membranes, only phosphatidyl serine reactivated significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号