首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The influence of potassium content (at neutral pH and millimolar Mg2+) on the size distribution of FtsZ polymers formed in the presence of constantly replenished GTP under steady-state conditions was studied by a combination of biophysical methods. The size of the GTP-FtsZ polymers decreased with lower potassium concentration, in contrast with the increase in the mass of the GDP-FtsZ oligomers, whereas no effect was observed on FtsZ GTPase activity and critical concentration of polymerization. Remarkably, the concerted formation of a narrow size distribution of GTP-FtsZ polymers previously observed at high salt concentration was maintained in all KCl concentrations tested. Polymers induced with guanosine 5′-(α,β-methylene)triphosphate, a slowly hydrolyzable analog of GTP, became larger and polydisperse as the potassium concentration was decreased. Our results suggest that the potassium dependence of the GTP-FtsZ polymer size may be related to changes in the subunit turnover rate that are independent of the GTP hydrolysis rate. The formation of a narrow size distribution of FtsZ polymers under very different solution conditions indicates that it is an inherent feature of FtsZ, not observed in other filament-forming proteins, with potential implications in the structural organization of the functional Z-ring.  相似文献   

2.
We have incorporated, for the first time, FtsZ and FtsA (the soluble proto-ring proteins from Escherichia coli) into bacterial giant unilamellar inner membrane vesicles (GUIMVs). Inside the vesicles, the structural organization and spatial distribution of fluorescently labeled FtsZ and FtsA were determined by confocal microscopy. We found that, in the presence of GDP, FtsZ was homogeneously distributed in the lumen of the vesicle. In the presence of GTP analogs, FtsZ assembled inside the GUIMVs, forming a web of dense spots and fibers. Whereas isolated FtsA was found adsorbed to the inner face of GUIMVs, the addition of FtsZ together with GTP analogs resulted in its dislodgement and its association with the FtsZ fibers in the lumen, suggesting that the FtsA-membrane interaction can be modulated by FtsZ polymers. The use of this novel in vitro system to probe interactions between divisome components will help to determine the biological implications of these findings.  相似文献   

3.
Escherichia coli K1, the most common cause of meningitis in neonates, has been shown to interact with GlcNAc1–4GlcNAc epitopes of Ecgp96 on human brain microvascular endothelial cells (HBMECs) via OmpA (outer membrane protein A). However, the precise domains of extracellular loops of OmpA interacting with the chitobiose epitopes have not been elucidated. We report the loop-barrel model of these OmpA interactions with the carbohydrate moieties of Ecgp96 predicted from molecular modeling. To test this model experimentally, we generated E. coli K1 strains expressing OmpA with mutations of residues predicted to be critical for interaction with the HBMEC and tested E. coli invasion efficiency. For these same mutations, we predicted the interaction free energies (including explicit calculation of the entropy) from molecular dynamics (MD), finding excellent correlation (R2 = 90%) with experimental invasion efficiency. Particularly important is that mutating specific residues in loops 1, 2, and 4 to alanines resulted in significant inhibition of E. coli K1 invasion in HBMECs, which is consistent with the complete lack of binding found in the MD simulations for these two cases. These studies suggest that inhibition of the interactions of these residues of Loop 1, 2, and 4 with Ecgp96 could provide a therapeutic strategy to prevent neonatal meningitis due to E. coli K1.  相似文献   

4.
The full-length ZipA protein from Escherichia coli, one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein, has been incorporated in single copy into nanodiscs formed by a membrane scaffold protein encircling an E. coli phospholipid mixture. This is an acellular system that reproduces the assembly of part of the cell division components. ZipA contained in nanodiscs (Nd-ZipA) retains the ability to interact with FtsZ oligomers and with FtsZ polymers. Interactions with FtsZ occur at similar strengths as those involved in the binding of the soluble form of ZipA, lacking the transmembrane region, suggesting that the transmembrane region of ZipA has little influence on the formation of the ZipA·FtsZ complex. Peptides containing partial sequences of the C terminus of FtsZ compete with FtsZ polymers for binding to Nd-ZipA. The affinity of Nd-ZipA for the FtsZ polymer formed with GTP or GMPCPP (a slowly hydrolyzable analog of GTP) is moderate (micromolar range) and of similar magnitude as for FtsZ-GDP oligomers. Polymerization does not stabilize the binding of FtsZ to ZipA. This supports the role of ZipA as a passive anchoring device for the proto-ring with little implication, if any, in the regulation of its assembly. Furthermore, it indicates that the tethering of FtsZ to the membrane shows sufficient plasticity to allow for its release from noncentral regions of the cytoplasmic membrane and its subsequent relocation to midcell when demanded by the assembly of a division ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号