首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells. Under inflammatory conditions, LPCAT2, but not LPCAT1, is activated and upregulated to produce PAF. Thus, it is important to develop inhibitors specific for LPCAT2 in order to ameliorate PAF-related inflammatory diseases. Here, we report the first identification of LPCAT2-specific inhibitors, N-phenylmaleimide derivatives, selected from a 174,000-compound library using fluorescence-based high-throughput screening followed by the evaluation of the effects on LPCAT1 and LPCAT2 activities, cell viability, and cellular PAF production. Selected compounds competed with acetyl-CoA for the inhibition of LPCAT2 lyso-PAFAT activity and suppressed PAF biosynthesis in mouse peritoneal macrophages stimulated with a calcium ionophore. These compounds had low inhibitory effects on LPCAT1 activity, indicating that adverse effects on respiratory functions may be avoided. The identified compounds and their derivatives will contribute to the development of novel drugs for PAF-related diseases and facilitate the analysis of LPCAT2 functions in phospholipid metabolism in vivo.  相似文献   

2.
Platelet-activating factor (PAF), a potent proinflammatory lipid mediator, is synthesized rapidly in response to extracellular stimuli by the activation of acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAFAT). We have reported previously that lyso-PAFAT activity is enhanced in three distinct ways in mouse macrophages: rapid activation (30 s) after PAF stimulation and minutes to hours after LPS stimulation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2) was later identified as a Ca2+-dependent lyso-PAFAT. However, the mechanism of rapid lyso-PAFAT activation within 30 s has not been elucidated. Here we show a new signaling pathway for rapid biosynthesis of PAF that is mediated by phosphorylation of LPCAT2 at Ser-34. Stimulation by either PAF or ATP resulted in PKCα-mediated phosphorylation of LPCAT2 to enhance lyso-PAFAT activity and rapid PAF production. Biochemical analyses showed that the phosphorylation of Ser-34 resulted in augmentation of Vmax with minimal Km change. Our results offer an answer for the previously unknown mechanism of rapid PAF production.  相似文献   

3.
Platelet-activating factor (PAF) is a potent lipid mediator playing various inflammatory and physiological roles. PAF is biosynthesized through two independent pathways called the de novo and remodeling pathways. Lyso-PAF acetyltransferase (lyso-PAF AT) was believed to biosynthesize PAF under inflammatory conditions, through the remodeling pathway. The first isolated lyso-PAF AT (LysoPAFAT/LPCAT2) had consistent properties. However, we show in this study the finding of a second lyso-PAF AT working under noninflammatory conditions. We partially purified a Ca(2+)-independent lyso-PAF AT from mouse lung. Immunoreactivity for lysophosphatidylcholine acyltransferase 1 (LPCAT1) was detected in the active fraction. Lpcat1-transfected Chinese hamster ovary cells exhibited both LPCAT and lyso-PAF AT activities. We confirmed that LPCAT1 transfers acetate from acetyl-CoA to lyso-PAF by the identification of an acetyl-CoA (and other acyl-CoAs) interacting site in LPCAT1. We further showed that LPCAT1 activity and expression are independent of inflammatory signals. Therefore, these results suggest the molecular diversity of lyso-PAF ATs is as follows: one (LysoPAFAT/LPCAT2) is inducible and activated by inflammatory stimulation, and the other (LPCAT1) is constitutively expressed. Each lyso-PAF AT biosynthesizes inflammatory and physiological amounts of PAF, depending on the cell type. These findings provide important knowledge for the understanding of the diverse pathological and physiological roles of PAF.  相似文献   

4.
Acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a relatively newly described and yet indispensable enzyme needed for generation of the bioactive surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPtdCho). Here, we show that lipopolysaccharide (LPS) causes LPCAT1 degradation using the Skp1-Cullin-F-box ubiquitin E3 ligase component, β-transducin repeat-containing protein (β-TrCP), that polyubiquitinates LPCAT1, thereby targeting the enzyme for proteasomal degradation. LPCAT1 was identified as a phosphoenzyme as Ser(178) within a phosphodegron was identified as a putative molecular recognition site for glycogen synthase kinase-3β (GSK-3β) phosphorylation that recruits β-TrCP docking within the enzyme. β-TrCP ubiquitinates LPCAT1 at an acceptor site (Lys(221)), as substitution of Lys(221) with Arg abrogated LPCAT1 polyubiquitination. LPS profoundly reduced immunoreactive LPCAT1 levels and impaired lung surfactant mechanics, effects that were overcome by siRNA to β-TrCP and GSK-3β or LPCAT1 gene transfer, respectively. Thus, LPS appears to destabilize the LPCAT1 protein by GSK-3β-mediated phosphorylation within a canonical phosphodegron for β-TrCP docking and site-specific ubiquitination. LPCAT1 is the first lipogenic substrate for β-TrCP, and the results suggest that modulation of the GSK-3β-SCFβ(TrCP) E3 ligase effector pathway might be a unique strategy to optimize dipalmitoylphosphatidylcholine levels in sepsis.  相似文献   

5.
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with multiple pathological and physiological effects. We have shown that basic fibroblast growth factor (bFGF) supplementation induces rapid proliferation of human umbilical vein endothelial cells (HUVEC), which is reduced upon removal of bFGF or by bFGF immunoneutralization. The PAF receptor antagonist LAU-8080 inhibited bFGF-stimulated HUVEC proliferation, indicating the involvement of PAF in the bFGF-mediated signaling of HUVEC. Although FGF receptor phosphorylation was not affected by LAU-8080, the bFGF-mediated prolonged phosphorylation, and activation of Erk-1 and -2 were attenuated. Phosphorylation of STAT-3 was observed in the presence of PAF or bFGF, which was attenuated by PAFR antagonists. PAF-induced STAT-3 phosphorylation observed in HUVEC pretreated with either Src inhibitor PP1 or JAK-2 inhibitor AG-490 indicated (i) immediate (1 min) phosphorylation of STAT-3 is dependent on Src, (ii) JAK-2-dependent STAT-3 phosphorylation occurs after the delayed (30 min) PAF exposure, and (iii) prolonged (60 min) STAT-3 phosphorylation may be either through Src and/or JAK-2. Attenuation of the STAT-3 phosphorylation by the PAFR antagonists indicated signaling through the PAF receptor. Taken together, these findings suggest the production of PAF is important for bFGF-mediated signaling and that a dual kinase mechanism is involved in the PAF-mediated signal transduction cascade.  相似文献   

6.
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat hippocampal slices. PAF caused an increase in the tyrosine phosphorylation of two phosphoproteins, which we identified by immunoprecipitation assays as the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. The PAF effect was time- and dose-dependent. In addition, the involvement of PAF receptor was demonstrated by using PCA-4248, a specific receptor antagonist. When NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMA), PAF-stimulated protein tyrosine phosphorylation was inhibited. In conclusion, our results indicate that PAF increased the tyrosine phosphorylation of both p125FAK and p130Cas proteins by the production of NO in hippocampus, suggesting that PAF may play a role in the functioning of this cerebral area.  相似文献   

7.
8.
Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.  相似文献   

9.
Platelet-activating factor (PAF) is a phospholipid inter- and intracellular mediator implicated in intestinal injury primarily via induction of an inflammatory cascade. We find that PAF also has direct pathological effects on intestinal epithelial cells (IEC). PAF induces Cl(-) channel activation, which is associated with intracellular acidosis and apoptosis. Using the rat small IEC line IEC-6, electrophysiological experiments demonstrated that PAF induces Cl(-) channel activation. This PAF-activated Cl(-) current was inhibited by Ca(2+) chelation and a calcium calmodulin kinase II inhibitor, suggesting PAF activation of a Ca(2+)-activated Cl(-) channel. To determine the pathological consequences of Cl(-) channel activation, microfluorimetry experiments were performed, which revealed PAF-induced intracellular acidosis, which is also inhibited by the Cl(-) channel inhibitor 4,4'diisothiocyanostilbene-2,2'disulfonic acid and Ca(2+) chelation. PAF-induced intracellular acidosis is associated with caspase 3 activation and DNA fragmentation. PAF-induced caspase activation was abolished in cells transfected with a pH compensatory Na/H exchanger construct to enhance H(+) extruding ability and prevent intracellular acidosis. As ClC-3 is a known intestinal Cl(-) channel dependent on both Ca(2+) and calcium calmodulin kinase II phosphorylation, we generated ClC-3 knockdown cells using short hairpin RNA. PAF induced Cl(-) current; acidosis and apoptosis were all significantly decreased in ClC-3 knockdown cells. Our data suggest a novel mechanism of PAF-induced injury by which PAF induces intracellular acidosis via activation of the Ca(2+)-dependent Cl(-) channel ClC-3, resulting in apoptosis of IEC.  相似文献   

10.
The synthesis of platelet-activating factor (PAF) by -stimulated RBL-2H3 cells was significantly suppressed by overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx). When the cells overexpressing PHGPx (L9 cells) were pretreated with diethyl maleate, which reduces PHGPx activity, PAF synthesis upon stimulation rose to levels seen in mock-transfected cells (S1 cells). Hydroperoxide levels, which are reduced in L9 cells, are involved in regulating PAF synthesis, because the addition of hydroperoxyeicosatetraenoic acid increased PAF production in -stimulated L9 cells to control cell levels. The activity of acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase, which is involved in the last step of PAF synthesis, is also reduced in L9 cells. p38 kinase inhibitors block acetyltransferase activity in normal -stimulated cells, suggesting that p38 kinase is involved in regulating acetyltransferase activity. Recombinant active p38 kinase activates acetyltransferase, whereas alkaline phosphatase reverses this, suggesting p38 kinase directly phosphorylates acetyltransferase. p38 kinase phosphorylation is blocked in L9 cells, indicating that high hydroperoxide levels are needed for the activation of p38 kinase. Thus, intracellular hydroperoxide levels participate in regulating p38 kinase phosphorylation, which in turn controls the activation of acetyltransferase and thus the synthesis of PAF. These observations suggest that PHGPx is an important component of the mechanisms regulating inflammation.  相似文献   

11.
1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, an ether phospholipid from mammals known as platelet-activating factor (PAF), specifically stimulates proton transport in zucchini (Cucurbita pepo L.) microsomes (G.F.E. Scherer, 1985, Biochem. Biophys. Res. Commm. 133, 1160–1167). When plant lipids were analyzed by two-dimensional thin-layer chromatography a lipid was found with chromatographic properties very similar to the PAF (G.F.E. Scherer and B. Stoffel, 1987, Planta, 172, 127–130). This lipid was isolated from zucchini hypocotyls, red beet root, lupin root, maize seedlings and crude soybean phospholipids. It had biological activity similar to that of the PAF, based on phosphorus content, and stimulated the steady-state pH in zucchini hypocotyl microsomes about twofold. Other phospholipids, monoglyceride, diglyceride, triglyceride, oleic acid, phorbol ester, and 1-O-alkylglycerol did not stimulate proton transport. When microsomes were washed the PAF was ineffective but when soluble protein was added the PAF stimulation of H+ transport was reconstituted. The soluble protein responsible for the PAF-dependent stimulation of transport activity could be partially purified by diethylaminoethyl Sephacel column chromatography. In the same fractions where the PAF-dependent transport-stimulatory protien was found, a protein kinase was active. This protein kinase was stimulated twofold either by the PAF or by Ca2+. When Ca2+ was present the PAF did not stimulate protein-kinase activity. When either the PAF, protein kinase, or both were added to membranes isolated on a linear sucrose gradient, ATPase activity was stimulated up to 30%. Comparison with marker enzymes indicated the possibility that tonoplast and plasma-membrane H+-ATPase might be stimulated by the PAF and protein kinase. We speculate that a PAF-dependent protein kinase is involved in the regulation of proton transport in plants in vitro and in vivo.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylamino] propane - DEAE diethylaminoethyl - EGTA ethylene glycolbis(-aminoethyl ether)-N,N,N,N,-tetraacetic acid - Mes 2-(N-morpholino)ethanesulfonic acid - PAF platelet-activating - factor 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine  相似文献   

12.
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator involved in a broad range of physiological and pathophysiological processes. The receptor of PAF (PAFR) is a heptahelical G-protein-coupled receptor. We have shown previously that upon agonist stimulation, PAFR internalised through clathrin-coated vesicles in an arrestin-dependent, but G-protein-coupling-independent manner. In the current report, we demonstrate that PAF stimulates Erk1/2 phosphorylation and: (1). dominant negative mutants of arrestins and dynamin do not influence Erk1/2 activation, (2). hypertonic conditions do not decrease the extent of Erk1/2 phosphorylation, (3). internalisation-deficient and/or G-protein-coupling-deficient mutants of PAFR activate Erk1/2 as efficiently as the wild-type PAFR, and (4). inhibition of epidermal growth factor receptor (EGFR) does not block Erk1/2 activation. Taken together, our results suggest that PAFR-mediated activation of mitogen-activated protein kinases Erk1/2 does not require receptor endocytosis, receptor tyrosine kinase transactivation or G-protein activation. In addition, our studies reveal that PAFR-mediated signals of G-protein activation, receptor internalisation and MAPK activation are differentially regulated by receptor structure and/or conformation.  相似文献   

13.
After de novo biosynthesis phospholipids undergo extensive remodeling by the Lands' cycle. Enzymes involved in phospholipid biosynthesis have been studied extensively but not those involved in reacylation of lysophosphopholipids. One key enzyme in the Lands' cycle is fatty acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which utilizes lysophosphatidylcholine (LysoPC) and fatty acyl-CoA to produce various phosphatidylcholine (PC) species. Four isoforms of LPCAT have been identified. In this study we found that LPCAT3 is the major hepatic isoform, and its knockdown significantly reduces hepatic LPCAT activity. Moreover, we report that hepatic LPCAT3 knockdown increases certain species of LysoPCs and decreases certain species of PC. A surprising observation was that LPCAT3 knockdown significantly reduces hepatic triglycerides. Despite this, these mice had higher plasma triglyceride and apoB levels. Lipoprotein production studies indicated that reductions in LPCAT3 enhanced assembly and secretion of triglyceride-rich apoB-containing lipoproteins. Furthermore, these mice had higher microsomal triglyceride transfer protein (MTP) mRNA and protein levels. Mechanistic studies in hepatoma cells revealed that LysoPC enhances secretion of apoB but not apoA-I in a concentration-dependent manner. Moreover, LysoPC increased MTP mRNA, protein, and activity. In short, these results indicate that hepatic LPCAT3 modulates VLDL production by regulating LysoPC levels and MTP expression.  相似文献   

14.
Platelet-activating factor (PAF), a phospholipid second messenger, has diverse physiological functions, including responses in differentiated endothelial cells to external stimuli. We used human umbilical vein endothelial cells (HUVECs) as a model system. We show that PAF activated pertussis toxin-insensitive G alpha(q) protein upon binding to its seven transmembrane receptor. Elevated cAMP levels were observed via activation of adenylate cyclase, which activated protein kinase A (PKA) and was attenuated by a PAF receptor antagonist, blocking downstream activity. Phosphorylation of Src by PAF required G alpha(q) protein and adenylate cyclase activation; there was an absolute requirement of PKA for PAF-induced Src phosphorylation. Immediate (1 min) PAF-induced STAT-3 phosphorylation required the activation of G alpha(q) protein, adenylate cyclase, and PKA, and was independent of these intermediates at delayed (30 min) and prolonged (60 min) PAF exposure. PAF activated PLC beta 3 through its G alpha(q) protein-coupled receptor, whereas activation of phospholipase C gamma 1 (PLC gamma 1) by PAF was independent of G proteins but required the involvement of Src at prolonged PAF exposure (60 min). We demonstrate for the first time in vascular endothelial cells: (i) the involvement of signaling intermediates in the PAF-PAF receptor system in the induction of TIMP2 and MT1-MMP expression, resulting in the coordinated proteolytic activation of MMP2, and (ii) a receptor-mediated signal transduction cascade for the tyrosine phosphorylation of FAK by PAF. PAF exposure induced binding of p130(Cas), Src, SHC, and paxillin to FAK. Clearly, PAF-mediated signaling in differentiated endothelial cells is critical to endothelial cell functions, including cell migration and proteolytic activation of MMP2.  相似文献   

15.
Cholestasis is one of the major causes of liver diseases. A chronic accumulation of toxic bile acids in the liver, which occurs in this condition, can induce fibrosis and cirrhosis. Inflammation is a fundamental component of acute and chronic cholestatic liver injury.Platelet-activating factor (PAF) is a proinflammatory lipid which may be generated by two independent pathways called the de novo and remodeling pathway being the last responsible for the synthesis of PAF during inflammation. In recent years a key role in PAF remodeling has been attributed to lysophosphatidylcholine acyltransferase (LPCAT) enzymes. Although the knowledge on their characteristic is growing, the exact mechanism of LPCAT in pathological conditions remains still unknown.Here, we reported that the level of lyso-PAF and PAF significantly increased in the liver of cirrhotic vs. control rats together with a significant decrease in both mRNA abundance and protein level of both LPCAT1 and LPCAT2. Acyltransferase activities of both LPCAT1 and LPCAT2 were parallel decreased in the liver of cirrhotic animals. Interestingly, treatment with silybin strongly decreased the level of both pro-inflammatory lipids and restored the activity and expression of both LPCAT1 and LPCAT2 of cirrhotic liver. Silybin effect was specific for LPCAT1 and LPCAT2 since it did not affect LPCAT3 mRNA abundance of cirrhotic liver.  相似文献   

16.
Oligomerization of band 3 protein has been recently indicated as an early event in senescent or damaged red cell membrane followed by specific deposition of anti-band 3 antibodies and binding of complement C3 fragments. The band 3-anti-band 3-C3b complex is recognized by homologous monocytes, and phagocytosis ensues. This study shows that recognition of the anti-band 3-C3b complex by the monocyte C3b receptor type one (CR1) plays a crucial role in the process of removal of damaged red cells. Indeed, blocking of monocyte CR1 with an anti-CR1 monoclonal antibody abrogated phagocytosis of diamide-treated red cells. Platelet-activating factor (PAF) is a phospholipid mediator involved in inflammatory processes. Nanomolar (R)-PAF enhanced the CR1-dependent phagocytosis of diamide-treated human red cell and of sheep red cells coated with C3b, induced the fast translocation of protein kinase C to monocyte membrane compartment, and stimulated the phosphorylation of monocyte CR1. The biologically inert lyso-PAF and the enantiomer (S)-PAF were inactive. PAF receptor antagonists and inhibitors of protein kinase C blocked the enhancement of phagocytosis induced by PAF. Protein kinase C translocation, phosphorylation of CR1, and stimulation of this receptor to an active state capable of mediating phagocytosis represent a novel pathway by which PAF interferes with red cell homeostasis and possibly modulates inflammatory reactions and host mechanisms against infections.  相似文献   

17.
Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79–271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein.  相似文献   

18.
19.
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.  相似文献   

20.
Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号