首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Control of stem cell behavior is a crucial aspect of developmental biology and regenerative medicine. While the functional role of electrophysiology in stem cell biology is poorly understood, it has become clear that endogenous ion flows represent a powerful set of signals by means of which cell proliferation, differentiation, and migration can be controlled in regeneration and embryonic morphogenesis.

Methodology/Principal Findings

We examined the membrane potential (Vmem) changes exhibited by human mesenchymal stem cells (hMSCs) undergoing adipogenic (AD) and osteogenic (OS) differentiation, and uncovered a characteristic hyperpolarization of differentiated cells versus undifferentiated cells. Reversal of the progressive polarization via pharmacological modulation of transmembrane potential revealed that depolarization of hMSCs prevents differentiation. In contrast, treatment with hyperpolarizing reagents upregulated osteogenic markers.

Conclusions/Significance

Taken together, these data suggest that the endogenous hyperpolarization is a functional determinant of hMSC differentiation and is a tractable control point for modulating stem cell function.  相似文献   

2.

Background

This study aimed to evaluate the feasibility of intraarterial (IA) delivery and in vivo MR imaging of superparamagnetic iron oxide (SPIO)-labeled mesenchymal stem cells (MSCs) in a canine stroke model.

Methodology

MSCs harvested from beagles’ bone marrow were labeled with home-synthesized SPIO. Adult beagle dogs (n = 12) were subjected to left proximal middle cerebral artery (MCA) occlusion by autologous thrombus, followed by two-hour left internal carotid artery (ICA) occlusion with 5 French vertebral catheter. One week later, dogs were classified as three groups before transplantation: group A: complete MCA recanalization, group B: incomplete MCA recanalization, group C: no MCA recanalization. 3×106 labeled-MSCs were delivered through left ICA. Series in vivo MRI images were obtained before cell grafting, one and 24 hours after transplantation and weekly thereafter until four weeks. MRI findings were compared with histological studies at the time point of 24 hours and four weeks.

Principal Findings

Home-synthesized SPIO was useful to label MSCs without cell viability compromise. MSCs scattered widely in the left cerebral hemisphere in group A, while fewer grafted cells were observed in group B and no cell was detected in group C at one hour after transplantation. A larger infarction on the day of cell transplantation was associated with more grafted cells in the brain. Grafted MSCs could be tracked effectively by MRI within four weeks and were found in peri-infarction area by Prussian blue staining.

Conclusion

It is feasible of IA MSCs transplantation in a canine stroke model. Both the ipsilateral MCA condition and infarction volume before transplantation may affect the amount of grafted cells in target brain. In vivo MR imaging is useful for tracking IA delivered MSCs after SPIO labeling.  相似文献   

3.

Background

The aim of this paper is to study the function of allogeneic and autologous NK cells against Dental Pulp Stem Cells (DPSCs) and Mesenchymal Stem Cells (MSCs) and to determine the function of NK cells in a three way interaction with monocytes and stem cells.

Methodology/Principal Findings

We demonstrate here that freshly isolated untreated or IL-2 treated NK cells are potent inducers of cell death in DPSCs and MSCs, and that anti-CD16 antibody which induces functional split anergy and apoptosis in NK cells inhibits NK cell mediated lysis of DPSCs and MSCs. Monocytes co-cultured with either DPSCs or MSCs decrease lysis of stem cells by untreated or IL-2 treated NK cells. Monocytes also prevent NK cell apoptosis thereby raising the overall survival and function of NK cells, DPSCs or MSCs. Both total population of monocytes and those depleted of CD16+ subsets were able to prevent NK cell mediated lysis of MSCs and DPSCs, and to trigger an increased secretion of IFN-γ by IL-2 treated NK cells. Protection of stem cells from NK cell mediated lysis was also seen when monocytes were sorted out from stem cells before they were added to NK cells. However, this effect was not specific to monocytes since the addition of T and B cells to stem cells also protected stem cells from NK cell mediated lysis. NK cells were found to lyse monocytes, as well as T and B cells.

Conclusion/Significance

By increasing the release of IFN-γ and decreasing the cytotoxic function of NK cells monocytes are able to shield stem cells from killing by the NK cells, resulting in an increased protection and differentiation of stem cells. More importantly studies reported in this paper indicate that anti-CD16 antibody can be used to prevent NK cell induced rejection of stem cells.  相似文献   

4.
Ni H  Huang L  Chen N  Zhang F  Liu D  Ge M  Guan S  Zhu Y  Wang JH 《PloS one》2010,5(10):e13736

Background

Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented.

Methodology/Principal Findings

Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells.

Conclusion/Significance

The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeutic approaches to help sensory recovery and substitution.  相似文献   

5.

Background

Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC) and embryonic neural stem cell (NSC) cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca2+-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate.

Methodology/Principal Findings

In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD). We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters.

Conclusions/Significance

Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture.  相似文献   

6.

Background

Based on growing evidence that some adult multipotent cells necessary for tissue regeneration reside in the walls of blood vessels and the clinical success of vein wrapping for functional repair of nerve damage, we hypothesized that the repair of nerves via vein wrapping is mediated by cells migrating from the implanted venous grafts into the nerve bundle.

Methodology/Principal Findings

To test the hypothesis, severed femoral nerves of rats were grafted with venous grafts from animals of the opposite sex. Nerve regeneration was impaired when decellularized or irradiated venous grafts were used in comparison to untreated grafts, supporting the involvement of venous graft-derived cells in peripheral nerve repair. Donor cells bearing Y chromosomes integrated into the area of the host injured nerve and participated in remyelination and nerve regeneration. The regenerated nerve exhibited proper axonal myelination, and expressed neuronal and glial cell markers.

Conclusions/Significance

These novel findings identify the mechanism by which vein wrapping promotes nerve regeneration.  相似文献   

7.
8.

Background and Methods

In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl)-derivative (DHP-d) to directly induce adipose tissue stromal cells (ATSC) to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1α and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC). Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions.

Conclusions/Significance

Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy.  相似文献   

9.

Background

While traditionally quite distinct, functional neuroimaging (e.g. functional magnetic resonance imaging: fMRI) and functional interference techniques (e.g. transcranial magnetic stimulation: TMS) increasingly address similar questions of functional brain organization, including connectivity, interactions, and causality in the brain. Time-resolved TMS over multiple brain network nodes can elucidate the relative timings of functional relevance for behavior (“TMS chronometry”), while fMRI functional or effective connectivity (fMRI EC) can map task-specific interactions between brain regions based on the interrelation of measured signals. The current study empirically assessed the relation between these different methods.

Methodology/Principal Findings

One group of 15 participants took part in two experiments: one fMRI EC study, and one TMS chronometry study, both of which used an established cognitive paradigm involving one visuospatial judgment task and one color judgment control task. Granger causality mapping (GCM), a data-driven variant of fMRI EC analysis, revealed a frontal-to-parietal flow of information, from inferior/middle frontal gyrus (MFG) to posterior parietal cortex (PPC). FMRI EC-guided Neuronavigated TMS had behavioral effects when applied to both PPC and to MFG, but the temporal pattern of these effects was similar for both stimulation sites. At first glance, this would seem in contradiction to the fMRI EC results. However, we discuss how TMS chronometry and fMRI EC are conceptually different and show how they can be complementary and mutually constraining, rather than contradictory, on the basis of our data.

Conclusions/Significance

The findings that fMRI EC could successfully localize functionally relevant TMS target regions on the single subject level, and conversely, that TMS confirmed an fMRI EC identified functional network to be behaviorally relevant, have important methodological and theoretical implications. Our results, in combination with data from earlier studies by our group (Sack et al., 2007, Cerebral Cortex), lead to informed speculations on complex brain mechanisms, and TMS disruption thereof, underlying visuospatial judgment. This first in-depth empirical and conceptual comparison of fMRI EC and TMS chronometry thereby shows the complementary insights offered by the two methods.  相似文献   

10.

Background

Human embryonic stem cells (hESCs) offer a virtually unlimited source of neural cells for structural repair in neurological disorders, such as stroke. Neural cells can be derived from hESCs either by direct enrichment, or by isolating specific growth factor-responsive and expandable populations of human neural stem cells (hNSCs). Studies have indicated that the direct enrichment method generates a heterogeneous population of cells that may contain residual undifferentiated stem cells that could lead to tumor formation in vivo.

Methods/Principal Findings

We isolated an expandable and homogenous population of hNSCs (named SD56) from hESCs using a defined media supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and leukemia inhibitory growth factor (LIF). These hNSCs grew as an adherent monolayer culture. They were fully neuralized and uniformly expressed molecular features of NSCs, including nestin, vimentin and radial glial markers. These hNSCs did not express the pluripotency markers Oct4 or Nanog, nor did they express markers for the mesoderm or endoderm lineages. The self-renewal property of the hNSCs was characterized by a predominant symmetrical mode of cell division. The SD56 hNSCs differentiated into neurons, astrocytes and oligodendrocytes throughout multiple passages in vitro, as well as after transplantation. Together, these criteria confirm the definitive NSC identity of the SD56 cell line. Importantly, they exhibited no chromosome abnormalities and did not form tumors after implantation into rat ischemic brains and into naïve nude rat brains and flanks. Furthermore, hNSCs isolated under these conditions migrated toward the ischemia-injured adult brain parenchyma and improved the independent use of the stroke-impaired forelimb two months post-transplantation.

Conclusions/Significance

The SD56 human neural stem cells derived under the reported conditions are stable, do not form tumors in vivo and enable functional recovery after stroke. These properties indicate that this hNSC line may offer a renewable, homogenous source of neural cells that will be valuable for basic and translational research.  相似文献   

11.
The purpose of this study was to determine the functional recovery of the transplanted induced pluripotent stem cells in a rat model of Huntington''s disease with use of 18F-FDG microPET/CT imaging.

Methods

In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle ten days after the quinolinic acid injection. The response to the treatment was evaluated by serial 18F-FDG PET/CT scans and Morris water maze test. Histological analyses and Western blotting were performed six weeks after stem cell transplantation.

Results

After induced pluripotent stem cells transplantation, higher 18F-FDG accumulation in the injured striatum was observed during the 4 to 6-weeks period compared with the quinolinic acid-injected group, suggesting the metabolic recovery of injured striatum. The induced pluripotent stem cells transplantation improved learning and memory function (and striatal atrophy) of the rat in six week in the comparison with the quinolinic acid-treated controls. In addition, immunohistochemical analysis demonstrated that transplanted stem cells survived and migrated into the lesioned area in striatum, and most of the stem cells expressed protein markers of neurons and glial cells.

Conclusion

Our findings show that induced pluripotent stem cells can survive, differentiate to functional neurons and improve partial striatal function and metabolism after implantation in a rat Huntington''s disease model.  相似文献   

12.
Gu B  Zhang J  Wu Y  Zhang X  Tan Z  Lin Y  Huang X  Chen L  Yao K  Zhang M 《PloS one》2011,6(5):e19386

Background

It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells.

Methods and Principal Findings

Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed.

Conclusions/Significance

Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells.  相似文献   

13.

Background

Erythropoietin (EPO), a hematopoietic cytokine, enhances neurogenesis and angiogenesis during stroke recovery. In the present study, we examined the effect of EPO on oligodendrogenesis in a rat model of embolic focal cerebral ischemia.

Methodology and Principal Findings

Recombinant human EPO (rhEPO) at a dose of 5,000 U/kg (n = 18) or saline (n = 18) was intraperitoneally administered daily for 7 days starting 24 h after stroke onset. Treatment with rhEPO augmented actively proliferating oligodendrocyte progenitor cells (OPCs) measured by NG2 immunoreactive cells within the peri-infarct white matter and the subventricular zone (SVZ), but did not protect against loss of myelinating oligodendrocytes measured by cyclic nucleotide phosphodiesterase (CNPase) positive cells 7 days after stroke. However, 28 and 42 days after stroke, treatment with rhEPO significantly increased myelinating oligodendrocytes and myelinated axons within the peri-infarct white matter. Using lentivirus to label subventricular zone (SVZ) neural progenitor cells, we found that in addition to the OPCs generated in the peri-infarct white matter, SVZ neural progenitor cells contributed to rhEPO-increased OPCs in the peri-infarct area. Using bromodeoxyuridine (BrdU) for birth-dating cells, we demonstrated that myelinating oligodendrocytes observed 28 days after stroke were derived from OPCs. Furthermore, rhEPO significantly improved neurological outcome 6 weeks after stroke. In vitro, rhEPO increased differentiation of adult SVZ neural progenitor cells into oligodendrocytes and enhanced immature oligodendrocyte cell proliferation.

Conclusions

Our in vivo and in vitro data indicate that EPO amplifies stroke-induced oligodendrogenesis that could facilitate axonal re-myelination and lead to functional recovery after stroke.  相似文献   

14.
Sasaki M  Honmou O  Radtke C  Kocsis JD 《PloS one》2011,6(10):e26577

Background

Most experimental stroke research is carried out in rodents, but given differences between rodents and human, nonhuman primate (NHP) models may provide a valuable tool to study therapeutic interventions. The authors developed a surgical method for transient occlusion of the M1 branch of middle cerebral artery (MCA) in the African green monkey to evaluate safety aspects of intravenous infusion of mesenchymal stem cells (hMSCs) derived from human bone marrow.

Methods

The left Sylvian fissure was exposed by a small fronto-temporal craniotomy. The M1 branch of the MCA was exposed by microsurgical dissection and clipped for 2 to 4 hours. Neurological examinations and magnetic resonance imaging (MRI) were carried out at regular post-operative course. hMSCs were infused 1 hour after reperfusion (clip release) in the 3-hour occlusion model.

Results

During M1 occlusion, two patterns of changes were observed in the lateral hemisphere surface. One pattern (Pattern 1) was darkening of venous blood, small vessel collapse, and blood pooling with no venous return in cortical veins. Animals with these three features had severe and lasting hemiplegia and MRI demonstrated extensive MCA territory infarction. Animals in the second pattern (Pattern 2) displayed darkening of venous blood, small vessel collapse, and reduced but incompletely occluded venous flow and the functional deficit was much less severe and MRI indicated smaller infarction areas in brain. The severe group (Pattern 1) likely had less extensive collateral circulation than the less severe group (Pattern 2) where venous pooling of blood was not observed. The hMSC infused animals showed a trend for greater functional improvement that was not statistically significant in the acute phase and no additive negative effects.

Conclusions

These results indicate inter-animal variability of collateral circulation after complete M1 occlusion and that hMSC infusion is safe in the developed NHP stroke model.  相似文献   

15.

Background

Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and Findings

This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or “minibody” was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion

This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.  相似文献   

16.

Background

Previous studies using hierarchical clustering approach to analyze resting-state fMRI data were limited to a few slices or regions-of-interest (ROIs) after substantial data reduction.

Purpose

To develop a framework that can perform voxel-wise hierarchical clustering of whole-brain resting-state fMRI data from a group of subjects.

Materials and Methods

Resting-state fMRI measurements were conducted for 86 adult subjects using a single-shot echo-planar imaging (EPI) technique. After pre-processing and co-registration to a standard template, pair-wise cross-correlation coefficients (CC) were calculated for all voxels inside the brain and translated into absolute Pearson''s distances after imposing a threshold CC≥0.3. The group averages of the Pearson''s distances were then used to perform hierarchical clustering with the developed framework, which entails gray matter masking and an iterative scheme to analyze the dendrogram.

Results

With the hierarchical clustering framework, we identified most of the functional connectivity networks reported previously in the literature, such as the motor, sensory, visual, memory, and the default-mode functional networks (DMN). Furthermore, the DMN and visual system were split into their corresponding hierarchical sub-networks.

Conclusion

It is feasible to use the proposed hierarchical clustering scheme for voxel-wise analysis of whole-brain resting-state fMRI data. The hierarchical clustering result not only confirmed generally the finding in functional connectivity networks identified previously using other data processing techniques, such as ICA, but also revealed directly the hierarchical structure within the functional connectivity networks.  相似文献   

17.

Background

Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells.

Methodology/Principal Findings

Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G0/G1 phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice.

Conclusions/Significance

These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.  相似文献   

18.

Background

Adult hippocampal neurogenesis has been implicated in the mechanism of antidepressant action, and neurotrophic factors can mediate the neurogenic changes underlying these effects. The neurotrophic factor neuregulin-1 (NRG1) is involved in many aspects of brain development, from cell fate determination to neuronal maturation. However, nothing is known about the influence of NRG1 on neurodevelopmental processes occurring in the mature hippocampus.

Methods

Adult male mice were given subcutaneous NRG1 or saline to assess dentate gyrus proliferation and neurogenesis, as well as cell fate determination. Mice also underwent behavioral testing. Expression of ErbB3 and ErbB4 NRG1 receptors in newborn dentate gyrus cells was assessed at various time points between birth and maturity. The phenotype of ErbB-expressing progenitor cells was also characterized with cell type-specific markers.

Results

The current study shows that subchronic peripheral NRG1β administration selectively increased cell proliferation (by 71%) and neurogenesis (by 50%) in the caudal dentate gyrus within the ventral hippocampus. This pro-proliferative effect did not alter neuronal fate, and may have been mediated by ErbB3 receptors, which were expressed by newborn dentate gyrus cells from cell division to maturity and colocalized with SOX2 in the subgranular zone. Furthermore, four weeks after cessation of subchronic treatment, animals displayed robust antidepressant-like behavior in the absence of changes in locomotor activity, whereas acute treatment did not produce antidepressant effects.

Conclusions

These results show that neuregulin-1β has pro-proliferative, neurogenic and antidepressant properties, further highlight the importance of peripheral neurotrophic factors in neurogenesis and mood, and support the role of hippocampal neurogenesis in mediating antidepressant effects.  相似文献   

19.

Background

Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the lumbar spinal cord of SOD1G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1G93A animals.

Methods/Principal Findings

Presymptomatic SOD1G93A rats (60–65 days old) received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal) was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50–65%) loss of large caliber descending motor axons.

Conclusions/Significance

These data demonstrate that in order to achieve a more clinically-adequate treatment, cell-replacement/gene therapy strategies will likely require both spinal and supraspinal targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号