首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Ligands of peroxisome-proliferator activated receptors (PPARs), such as non-esterified fatty acids (NEFAs), induce expression of angiopoietin-like protein 4 (ANGPTL4). Recently ANGPTL4 has been reported to be a mediator of intracellular adipose lipolysis induced by glucocorticoids.

Objective

To determine the concentrations of ANGPTL4 in cord serum of neonates born by spontaneous vaginal delivery (SVD) and by pre-labor cesarean section (CS) from healthy women, and to relate them to parameters of neonatal lipolytic activity at birth.

Measurements

In 54 neonates born by SVD and in 56 neonates born by CS, arterial cord blood was drawn to determine insulin, cortisol, triacylglycerols (TAGs), glycerol, non-esterified fatty acids (NEFAs), individual fatty acids, ANGPTL4, adiponectin, retinol binding protein 4 (RBP4) and leptin.

Results

Birth weight and neonatal fat mass in SVD and CS showed no difference, but the concentrations of glycerol, adiponectin, RBP4, NEFAs and most individual fatty acids were higher in cord serum of neonates born by SVD compared to CS, indicating a higher adipose tissue breakdown in the SVD group. The concentrations of TAG and cortisol were also higher and that of insulin was lower in cord serum of SVD compared to the CS group. However, the concentration in cord serum of ANGPTL4 did not differ between the two groups and no positive correlation with either NEFA or glycerol concentrations were detected.

Conclusion

ANGPTL4 is known to stimulate lipolysis in adults, but does not appear to mediate the increased activity in SVD, indicating the presence of different regulatory inputs.  相似文献   

2.
Angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) are secreted proteins that regulate triglyceride (TG) metabolism in part by inhibiting lipoprotein lipase (LPL). Recently, we showed that treatment of wild-type mice with monoclonal antibody (mAb) 14D12, specific for ANGPTL4, recapitulated the Angptl4 knock-out (-/-) mouse phenotype of reduced serum TG levels. In the present study, we mapped the region of mouse ANGPTL4 recognized by mAb 14D12 to amino acids Gln29–His53, which we designate as specific epitope 1 (SE1). The 14D12 mAb prevented binding of ANGPTL4 with LPL, consistent with its ability to neutralize the LPL-inhibitory activity of ANGPTL4. Alignment of all angiopoietin family members revealed that a sequence similar to ANGPTL4 SE1 was present only in ANGPTL3, corresponding to amino acids Glu32–His55. We produced a mouse mAb against this SE1-like region in ANGPTL3. This mAb, designated 5.50.3, inhibited the binding of ANGPTL3 to LPL and neutralized ANGPTL3-mediated inhibition of LPL activity in vitro. Treatment of wild-type as well as hyperlipidemic mice with mAb 5.50.3 resulted in reduced serum TG levels, recapitulating the lipid phenotype found in Angptl3-/- mice. These results show that the SE1 region of ANGPTL3 and ANGPTL4 functions as a domain important for binding LPL and inhibiting its activity in vitro and in vivo. Moreover, these results demonstrate that therapeutic antibodies that neutralize ANGPTL4 and ANGPTL3 may be useful for treatment of some forms of hyperlipidemia.Lipoprotein lipase (LPL)5 plays a pivotal role in lipid metabolism by catalyzing the hydrolysis of plasma triglycerides (TGs). LPL is likely to be regulated by mechanisms that depend on nutritional status and on the tissue in which it is expressed (13). Two secreted proteins, angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), play important roles in the regulation of LPL activity (4, 5). ANGPTL3 and ANGPTL4 consist of a signal peptide, an N-terminal segment containing coiled-coil domains, and a C-terminal fibrinogen-like domain. The N-terminal segment as well as full-length ANGPTL3 and ANGPTL4 have been shown to inhibit LPL activity, and deletion of the N-terminal segment of ANGPTL3 and ANGPTL4 resulted in total loss of LPL-inhibiting activity (6, 7). These observations clearly indicate that the N-terminal region of ANGPTL4 contains the functional domain that inhibits LPL and affects plasma lipid levels. The coiled-coil domains have been proposed to be responsible for oligomerization (8); however, it is not known whether the coiled-coil domains directly mediate the inhibition of LPL activity.To define the physiological role of ANGPTL4 more clearly, we characterized the pharmacological consequences of ANGPTL4 inhibition in mice treated with the ANGPTL4-neutralizing monoclonal antibody (mAb) 14D12 (9). Injection of mAb 14D12 significantly lowered fasting TG levels in C57BL/6J mice relative to levels in C57BL/6J mice treated with an isotype-matched anti-KLH control (KLH) mAb (9). These reduced TG values were similar to decreases in fasting plasma TG levels measured in Angptl4 knock-out (-/-) mice. This study demonstrated that mAb 14D12 is a potent ANGPTL4-neutralizing antibody that is able to inhibit systemic ANGPTL4 activity and thereby recapitulate the reduced lipid phenotype found in Angptl4-/- mice. The readily apparent pharmacological effect of mAb 14D12 prompted new questions about the epitope recognized by mAb 14D12 and how this antibody-antigen binding event affected ANGPTL4 function as an LPL inhibitor.Although ANGPTL4 is able to interact directly with LPL (10), it is not clear which amino acids within ANGPTL4 mediate this interaction. Here we show that amino acids Gln29–His53 of mANGPTL4 contain the epitope for mAb 14D12. This region, hereby designated specific epitope 1 (SE1), also defines a domain that mediates the interaction between ANGPTL4 and LPL and the subsequent inactivation of LPL. With this information we present evidence that ANGPTL3 also contains an SE1 region, and with antibodies specifically reactive with ANGPTL3 SE1 we examine whether the ANGPTL3 SE1 region is involved in LPL binding and inhibition. We also determined whether treatment of C57BL/6 mice with an anti-ANGPTL3 SE1 mAb can recapitulate the phenotype of lower serum TG and cholesterol levels found in Angptl3-/- mice. Finally we tested the therapeutic potential of an anti-ANGPTL3 SE1 mAb for treatment of hyperlipidemia in apolipoprotein E-/- (ApoE-/-) or low density lipoprotein receptor-/- (LDLr-/-) mice.  相似文献   

3.

Background

The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved.

Methods

BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract.

Results

Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum.

Conclusion

Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring by activating regulatory pathways, likely through TLR2/4 signalling.  相似文献   

4.
5.
6.

Background & Aims

While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet.

Methods

C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks.

Results

HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice.

Conclusions

HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.  相似文献   

7.
Angiopoietin-like protein 4 (ANGPTL4) is a secreted protein that modulates the disposition of circulating triglycerides (TG) by inhibiting lipoprotein lipase (LPL). Here we examine the steps involved in the synthesis and post-translational processing of ANGPTL4, and the effects of a naturally occurring sequence variant (E40K) that is associated with lower plasma TG levels in humans. Expression of the wild-type and mutant proteins in HEK-293A cells indicated that ANGPTL4 formed dimers and tetramers in cells prior to secretion and cleavage of the protein. After cleavage at a canonical proprotein convertase cleavage site (161RRKR164), the oligomeric structure of the N-terminal domain was retained whereas the C-terminal fibrinogen-like domain dissociated into monomers. Inhibition of cleavage did not interfere with oligomerization of ANGPTL4 or with its ability to inhibit LPL, whereas mutations that prevented oligomerization severely compromised the capacity of the protein to inhibit LPL. ANGPTL4 containing the E40K substitution was synthesized and processed normally, but no monomers or oligomers of the N-terminal fragments accumulated in the medium; medium from these cells failed to inhibit LPL activity. Parallel experiments performed in mice recapitulated these results. Our findings indicate that oligomerization, but not cleavage, of ANGPTL4 is required for LPL inhibition, and that the E40K substitution destabilizes the protein after secretion, preventing the extracellular accumulation of oligomers and abolishing the ability of the protein to inhibit LPL activity.Angiopoietin-like protein 4 (ANGPTL4)4 is a 50-kDa protein that is synthesized and secreted from several metabolically active tissues and has been implicated in the trafficking of circulating TG (1, 2). Triglycerides, either acquired from the diet or synthesized endogenously, circulate in blood as constituents of chylomicrons and very low density lipoproteins (VLDL). As these lipoproteins circulate in tissues they encounter lipoprotein lipase (LPL) at the vascular endothelial surfaces. LPL hydrolyzes the TG, producing free fatty acids that are taken up by the surrounding tissues. ANGPTL4 inhibits the activity of LPL, thereby limiting the uptake of TG-derived fatty acids by the underlying cells (3, 4). Overexpression of ANGPTL4 in mice causes severe hypertriglyceridemia, whereas mice lacking ANGPTL4 have increased LPL activity and low plasma levels of TG (5, 6). In mice, ANGPTL4 is predominantly expressed in adipose tissue and is strongly induced by fasting (2). Accordingly it has been proposed that ANGPTL4 inhibits LPL activity in adipose tissue to reroute fatty acids away from fat to muscle and other tissues when food intake is low (3, 4).ANGPTL4 belongs to a family of seven structurally similar secreted proteins (ANGPTL1-ANGPTL7) that contain a signal sequence followed by an α-helical region predicted to form a coiled-coil, and a globular fibrinogen-like domain at the C terminus (1). Gel filtration studies of recombinant ANGPTL4 indicate that the protein assembles into oligomers that are stabilized by disulfide bonds (7). Substitution of two highly conserved cysteine residues at positions 76 and 80 in the α-helical domain prevents oligomerization of ANGPTL4 and impairs the ability of the recombinant protein to increase plasma TG levels when overexpressed in the livers of rats (7).Upon secretion into the circulation, ANGPTL4 is cleaved into an N-terminal domain and a C-terminal fibrinogen-like domain (8). The N-terminal peptide circulates as an oligomer, and the fibrinogen-like domain circulates as a monomer (8). The N-terminal helical region of ANGPTL4 is necessary and sufficient for inhibition of LPL (9). A peptide corresponding to amino acids 1-187 of the protein binds LPL with high affinity and converts the enzyme from catalytically active dimers to inactive monomers, thereby inhibiting LPL activity (10). After disrupting the LPL dimer, ANGPTL4 is released. The LPL monomers remain folded and stable but fail to re-form active dimers. These data suggest that the N-terminal domain of ANGPTL4 interacts directly but transiently with LPL, triggering a stable conformational switch in LPL that irreversibly inactivates the enzyme.Recently, we used a population-based resequencing strategy to examine the metabolic role of ANGPTL4 in humans (11). Resequencing the coding region of ANGPTL4 in a large (n = 3,501), multiethnic sample revealed multiple rare sequence variations that alter an amino acid in the protein and are associated with low plasma TG levels. In addition, we identified a more common variant (E40K), that was present in ∼3% of European-Americans and was associated with significantly lower plasma levels of TG and low density lipoprotein-cholesterol (LDL-C), and higher levels of high density lipoprotein (HDL)-C in two large epidemiological studies (11). These association studies confirmed that ANGPTL4 is involved in TG metabolism in humans, and also revealed additional roles in humans in the metabolism of HDL and LDL, which were not apparent from studies in genetically modified mice.Here we examined the synthesis, secretion, and processing of ANGPTL4 and determine the mechanism by which substitution of a basic (lysine) for an acidic (glutamate) residue at residue 40 affects the function of the protein.  相似文献   

8.
Glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) binds both LPL and chylomicrons, suggesting that GPIHBP1 is a platform for LPL-dependent processing of triglyceride (TG)-rich lipoproteins. Here, we investigated whether GPIHBP1 affects LPL activity in the absence and presence of LPL inhibitors angiopoietin-like (ANGPTL)3 and ANGPTL4. Like heparin, GPIHBP1 stabilized but did not activate LPL. ANGPTL4 potently inhibited nonstabilized LPL as well as heparin-stabilized LPL but not GPIHBP1-stabilized LPL. Like ANGPTL4, ANGPTL3 inhibited nonstabilized LPL but not GPIHBP1-stabilized LPL. ANGPTL3 also inhibited heparin-stabilized LPL but with less potency than nonstabilized LPL. Consistent with these in vitro findings, fasting serum TGs of Angptl4−/−/Gpihbp1−/− mice were lower than those of Gpihbp1−/− mice and approached those of wild-type littermates. In contrast, serum TGs of Angptl3−/−/Gpihbp1−/− mice were only slightly lower than those of Gpihbp1−/− mice. Treating Gpihbp1−/− mice with ANGPTL4- or ANGPTL3-neutralizing antibodies recapitulated the double knockout phenotypes. These data suggest that GPIHBP1 functions as an LPL stabilizer. Moreover, therapeutic agents that prevent LPL inhibition by ANGPTL4 or, to a lesser extent, ANGPTL3, may benefit individuals with hyperlipidemia caused by gene mutations associated with decreased LPL stability.  相似文献   

9.

Background

Associations have been made between obesity and reduced intestinal numbers of members of the phylum Bacteroidetes, but there is no direct evidence of the role these bacteria play in obesity. Herein, the effects of Bacteroides uniformis CECT 7771 on obesity-related metabolic and immune alterations have been evaluated.

Methods and Findings

Adult (6–8 week) male wild-type C57BL-6 mice were fed a standard diet or a high-fat-diet HFD to induce obesity, supplemented or not with B. uniformis CECT 7771 for seven weeks. Animal weight was monitored and histologic, biochemical, immunocompetent cell functions, and features of the faecal microbiota were analysed after intervention. The oral administration of B. uniformis CECT 7771 reduced body weight gain, liver steatosis and liver cholesterol and triglyceride concentrations and increased small adipocyte numbers in HFD-fed mice. The strain also reduced serum cholesterol, triglyceride, glucose, insulin and leptin levels, and improved oral tolerance to glucose in HFD fed mice. The bacterial strain also reduced dietary fat absorption, as indicated by the reduced number of fat micelles detected in enterocytes. Moreover, B. uniformis CECT 7771 improved immune defence mechanisms, impaired in obesity. HFD-induced obesity led to a decrease in TNF-α production by peritoneal macrophages stimulated with LPS, conversely, the administration of B. uniformis CECT 7771 increased TNF-α production and phagocytosis. Administering this strain also increased TNF-α production by dendritic cells (DCs) in response to LPS stimulation, which was significantly reduced by HFD. B. uniformis CECT 7771 also restored the capacity of DCs to induce a T-cell proliferation response, which was impaired in obese mice. HFD induced marked changes in gut microbiota composition, which were partially restored by the intervention.

Conclusions

Altogether, the findings indicate that administration of B. uniformis CECT 7771 ameliorates HFD-induced metabolic and immune dysfunction associated with intestinal dysbiosis in obese mice.  相似文献   

10.
11.

Objective

High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet.

Methods

Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.

Results

Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.

Conclusion

Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.  相似文献   

12.

[Purpose]

The purpose of this study was to investigate the effects of potato and lotus leaf extract intake on body composition, abdominal fat, and blood lipid concentration in female university students.

[Methods]

A total of 19 female university students participated in this 8-week study, and they were randomly assigned into 2 groups; potato and lotus leaf extract (skinny-line) administered group (SKG, n =9) and placebo group (PG, n = 10). The main results of the present study are presented below.

[Results]

1) Body mass index, and percent body fat and abdominal fat in students of the SKG showed a decreasing tendency without significant interaction, 2) total cholesterol (TC), triglyceride (TG), and low density lipoprotein (LDL-C) in students of the SKG showed an averagely decreasing tendency and there was a significant interaction of TC only, 3) high density lipoprotein (HDL-C) in students of the SKG showed an increasing tendency without significant interaction, and 4) Z-score of fatness testing interaction in group × repetition did not show a significant interaction; however, there was a significant interaction of TC in group × repetition. Based on these results, 8-week intake of potato and lotus leaf extract had a positive effect of lowering TC. On the other hand, it had no significant effect on other types of lipids and percent body fat changes.

[Conclusion]

There was a positive tendency of blood lipids in students of the SKG and it seems that potato and lotus leaf extract intake might prevent obesity and improve obesity related syndromes.  相似文献   

13.

Background

Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR).

Methods and Principal Findings

VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT.

Conclusions

Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.  相似文献   

14.
JY Lee  HK Lee  DC Lee  JW Lee 《PloS one》2012,7(8):e43518

Background

Carcinoembryonic antigen (CEA) is a tumor marker overexpressed in adenocarcinoma that has proinflammatory properties. Recent studies have reported that CEA is positively associated with carotid atherosclerosis and metabolic syndrome. Because visceral obesity is a known risk factor for cardiometabolic diseases, CEA may also be associated with visceral adiposity. Therefore, we investigated the relationship between serum CEA concentration and visceral obesity in female Korean nonsmokers.

Methods

A total of 270 Korean female nonsmokers were enrolled during their routine health check-ups. Biomarkers of metabolic risk factors were assessed along with body composition by computed tomography. Serum CEA levels were measured by using a chemiluminescence immunoassay analyzer.

Results

Serum CEA levels correlated with visceral fat area, fasting glucose, and triglyceride levels after adjusting for age and BMI. The mean visceral fat area increased significantly with the increasing CEA tirtiles. In a step-wise multiple regression analysis, age (β = 0.26, p<0.01) and visceral fat area (β = 0.19, p = 0.03) were identified as explanatory variables for serum CEA level.

Conclusions

This study suggested that CEA may be a mediator that links metabolic disturbance and tumorigenesis in visceral obesity. Further studies are required to better understand the clinical and pathophysiological significance of our findings.  相似文献   

15.
16.

Background

The uptake and trans-placental trafficking of fatty acids from the maternal blood into the fetal circulation are essential for embryonic development, and involve several families of proteins. Fatty acid transport proteins (FATPs) uniquely transport fatty acids into cells. We surmised that placental FATPs are germane for fetal growth, and are regulated during hypoxic stress, which is associated with reduced fat supply to the fetus.

Methodology/Principal Findings

Using cultured primary term human trophoblasts we found that FATP2, FATP4 and FATP6 were highly expressed in trophoblasts. Hypoxia enhanced the expression of trophoblastic FATP2 and reduced the expression of FATP4, with no change in FATP6. We also found that Fatp2 and Fatp4 are expressed in the mouse amnion and placenta, respectively. Mice deficient in Fatp2 or Fatp4 did not deviate from normal Mendelian distribution, with both embryos and placentas exhibiting normal weight and morphology, triglyceride content, and expression of genes related to fatty acid mobilization.

Conclusions/Significance

We conclude that even though hypoxia regulates the expression of FATP2 and FATP4 in human trophoblasts, mouse Fatp2 and Fatp4 are not essential for intrauterine fetal growth.  相似文献   

17.

Background

We investigated the validity of REE predictive equations before and after 12-week energy-restricted diet intervention in Spanish obese (30 kg/m2>BMI<40 kg/m2) women.

Methods

We measured REE (indirect calorimetry), body weight, height, and fat mass (FM) and fat free mass (FFM, dual X-ray absorptiometry) in 86 obese Caucasian premenopausal women aged 36.7±7.2 y, before and after (n = 78 women) the intervention. We investigated the accuracy of ten REE predictive equations using weight, height, age, FFM and FM.

Results

At baseline, the most accurate equation was the Mifflin et al. (Am J Clin Nutr 1990; 51: 241–247) when using weight (bias:−0.2%, P = 0.982), 74% of accurate predictions. This level of accuracy was not reached after the diet intervention (24% accurate prediction). After the intervention, the lowest bias was found with the Owen et al. (Am J Clin Nutr 1986; 44: 1–19) equation when using weight (bias:−1.7%, P = 0.044), 81% accurate prediction, yet it provided 53% accurate predictions at baseline.

Conclusions

There is a wide variation in the accuracy of REE predictive equations before and after weight loss in non-morbid obese women. The results acquire especial relevance in the context of the challenging weight regain phenomenon for the overweight/obese population.  相似文献   

18.

Background

Phloem feeding insects, such as aphids, feed almost continuously on plant phloem sap, a liquid diet that contains high concentrations of sucrose (a disaccharide comprising of glucose and fructose). To access the available carbon, aphids hydrolyze sucrose in the gut lumen and transport its constituent monosaccharides, glucose and fructose. Although sugar transport plays a critical role in aphid nutrition, the molecular basis of sugar transport in aphids, and more generally across all insects, remains poorly characterized. Here, using the latest release of the pea aphid, Acyrthosiphon pisum, genome we provide an updated gene annotation and expression profile of putative sugar transporters. Finally, gut expressed sugar transporters are functionally expressed in yeast and screened for glucose and fructose transport activity.

Results

In this study, using a de novo approach, we identified 19 sugar porter (SP) family transporters in the A. pisum genome. Gene expression analysis, based on 214, 834 A. pisum expressed sequence tags, supports 17 sugar porter family transporters being actively expressed in adult female aphids. Further analysis, using quantitative PCR identifies 4 transporters, A. pisum sugar transporter 1, 3, 4 and 9 (ApST1, ApST3, ApST4 and ApST9) as highly expressed and/or enriched in gut tissue. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST3 (previously characterized) and ApST4 (reported here) transport glucose and fructose resulting in functional rescue of the yeast mutant. Here we characterize ApST4, a 491 amino acid protein, with 12 predicted transmembrane regions, as a facilitative glucose/fructose transporter. Finally, phylogenetic reconstruction reveals that ApST4, and related, as yet uncharacterized insect transporters are phylogenetically closely related to human GLUT (SLC2A) class I facilitative glucose/fructose transporters.

Conclusions

The gut enhanced expression of ApST4, and the transport specificity of its product is consistent with ApST4 functioning as a gut glucose/fructose transporter. Here, we hypothesize that both ApST3 (reported previously) and ApST4 (reported here) function at the gut interface to import glucose and fructose from the gut lumen.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-647) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Background

The nematode Caenorhabditis elegans has emerged as an important model for studies of the regulation of fat storage. C. elegans feed on bacteria, and various strains of E. coli are commonly used in research settings. However, it is not known whether particular bacterial diets affect fat storage and metabolism.

Methodology/Principal Findings

Fat staining of fixed nematodes, as well as biochemical analysis of lipid classes, revealed considerable differences in fat stores in C. elegans growing on four different E. coli strains. Fatty acid composition and carbohydrate levels differ in the E. coli strains examined in these studies, however these nutrient differences did not appear to have a causative effect on fat storage levels in worms. Analysis of C. elegans strains carrying mutations disrupting neuroendocrine and other fat-regulatory pathways demonstrated that the intensity of Nile Red staining of live worms does not correlate well with biochemical methods of fat quantification. Several neuroendocrine pathway mutants and eating defective mutants show higher or lower fat storage levels than wild type, however, these mutants still show differences in fat stores when grown on different bacterial strains. Of all the mutants tested, only pept-1 mutants, which lack a functional intestinal peptide transporter, fail to show differential fat stores. Furthermore, fatty acid analysis of triacylglycerol stores reveals an inverse correlation between total fat stores and the levels of 15-methylpalmitic acid, derived from leucine catabolism.

Conclusions

These studies demonstrate that nutritional cues perceived in the intestine regulate fat storage levels independently of neuroendocrine cues. The involvement of peptide transport and the accumulation of a fatty acid product derived from an amino acid suggest that specific peptides or amino acids may provide nutritional signals regulating fat metabolism and fat storage levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号