首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
《Molecular cell》2014,53(1):49-62
  1. Download : Download high-res image (295KB)
  2. Download : Download full-size image
  相似文献   

5.
Wild house mice form social hierarchies with aggressive males defending territories, in which females, young mice and submissive adult males share nests. In contrast, socially excluded males are barred from breeding groups, have numerous bite wounds and patches of thinning fur. Since their feeding times are often disrupted, we investigated whether social exclusion leads to changes in epigenetic marks of metabolic genes in liver tissue. We used chromatin immunoprecipitation and quantitative PCR to measure enrichment of two activating histone marks at 15 candidate loci. The epigenetic profiles of healthy males sampled from nest boxes differed significantly from the profiles of ostracized males caught outside of nests and showing bite wounds indicative of social exclusion. Enrichment of histone-3 lysine-4 trimethylation (H3K4me3) changed significantly at genes Cyp4a14, Gapdh, Nr3c1, Pck1, Ppara, and Sqle. Changes at histone-3 lysine-27 acetylation (H3K27ac) marks were detected at genes Fasn, Nr3c1, and Plin5. A principal components analysis separated the socialized from the ostracized mice. This was independent of body weight for the H3K4me3 mark, and partially dependent for H3K27ac. There was no separation, however, between healthy males that had been sampled from two different nests. A hierarchical cluster analysis also separated the two phenotypes, which was independent of body weight for both markers. Our study shows that a period of social exclusion during adult life leads to quantitative changes in histone modification patterns in mouse liver tissue. Similar epigenetic changes might occur during the development of stress-induced metabolic disorders in humans.  相似文献   

6.
Trimethylation of histone H3 lysine 27 (H3K27me3) is important for gene silencing and imprinting, (epi)genome organization and organismal development. In a prevalent model, the functional readout of H3K27me3 in mammalian cells is achieved through the H3K27me3-recognizing chromodomain harbored within the chromobox (CBX) component of canonical Polycomb repressive complex 1 (cPRC1), which induces chromatin compaction and gene repression. Here, we report that binding of H3K27me3 by a Bromo Adjacent Homology (BAH) domain harbored within BAH domain-containing protein 1 (BAHD1) is required for overall BAHD1 targeting to chromatin and for optimal repression of the H3K27me3-demarcated genes in mammalian cells. Disruption of direct interaction between BAHD1BAH and H3K27me3 by point mutagenesis leads to chromatin remodeling, notably, increased histone acetylation, at its Polycomb gene targets. Mice carrying an H3K27me3-interaction-defective mutation of Bahd1BAH causes marked embryonic lethality, showing a requirement of this pathway for normal development. Altogether, this work demonstrates an H3K27me3-initiated signaling cascade that operates through a conserved BAH ‘reader’ module within BAHD1 in mammals.  相似文献   

7.
8.
正Histone methylation is a kind of important epigenetic modification which occurs on the lysine residue or arginine residue of histone tails(Zhang and Reinberg,2001).It takes part in multiple biological processes,including gene expression,genomic stability,stem cell maturity,genetic imprinting,mitosis and development(Fischle et al.,2005).Abnormal histone methylation pattern may  相似文献   

9.
The epigenetic marks H3K27me3 and H3K4me3 are important repressive and permissive histone modifications, respectively, which are involved in gene regulation such as Hox gene expression during embryonic development. In this study, we investigated the global levels of these two histone modifications. We also investigated the expression of H3K27me3's methyltransferase (EZH2), EZH2 co‐factors (EED and SUZ12) and demethylases (JMJD3 and UTX), as well as H3K4me3's methylases (ASH1L and MLL1) and demethylase (RBP2) in porcine pre‐implantation embryos. In addition, the expression of Hox genes, HOXA2, HOXA3, HOXA7, HOXA10, HOXB4, HOXB7, HOXC8, HOXD8, and HOXD10 was investigated. We found that global levels of H3K27me3 decreased from the 1‐ to the 4‐cell stage, corresponding to the time of major embryonic genome activation. Subsequently, the levels increased in hatched blastocysts, particularly in the trophectoderm. The expression levels of EZH2, EED, SUZ12, JMJD3, and UTX correlated well with these findings. The global levels of H3K4me3 decreased from the 1‐cell to the morula stage and increased in hatched blastocysts, especially in trophectoderm. A peak in expression of ASH1L was seen at the 4‐cell stage, but overall, expression of ASH1L, MLL1, and RBP2 correlated poorly with H3K4me3. HOXA3, A7, and B4 were expressed in 4‐cell embryos, and HOXA7, A10, B4, and D8 were expressed in hatched blastocysts, and did not correlate well to global methylation of H3K27me3 or H3K4me3. Thus, H3K4me3 may play a role in early porcine embryonic genome activation, whereas, H3K27me3 may be involved in initial cell lineage segregation in the blastocyst. Mol. Reprod. Dev. 77: 540–549, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
Combinations of histones carrying different covalent modifications are a major component of epigenetic variation. We have mapped nine modified histones in the barley seedling epigenome by chromatin immunoprecipitation next‐generation sequencing (ChIP‐seq). The chromosomal distributions of the modifications group them into four different classes, and members of a given class also tend to coincide at the local DNA level, suggesting that global distribution patterns reflect local epigenetic environments. We used this peak sharing to define 10 chromatin states representing local epigenetic environments in the barley genome. Five states map mainly to genes and five to intergenic regions. Two genic states involving H3K36me3 are preferentially associated with constitutive gene expression, while an H3K27me3‐containing genic state is associated with differentially expressed genes. The 10 states display striking distribution patterns that divide barley chromosomes into three distinct global environments. First, telomere‐proximal regions contain high densities of H3K27me3 covering both genes and intergenic DNA, together with very low levels of the repressive H3K27me1 modification. Flanking these are gene‐rich interior regions that are rich in active chromatin states and have greatly decreased levels of H3K27me3 and increasing amounts of H3K27me1 and H3K9me2. Lastly, H3K27me3‐depleted pericentromeric regions contain gene islands with active chromatin states separated by extensive retrotransposon‐rich regions that are associated with abundant H3K27me1 and H3K9me2 modifications. We propose an epigenomic framework for barley whereby intergenic H3K27me3 specifies facultative heterochromatin in the telomere‐proximal regions and H3K27me1 is diagnostic for constitutive heterochromatin elsewhere in the barley genome.  相似文献   

13.
14.
Mutual antagonism between DNA methylation and H3K27me3 histone methylation suggests a dynamic crosstalk between these epigenetic marks that could help ensure correct gene expression programmes. Work from Manzo et al ( 2017 ) now shows that an isoform of de novo DNA methyltransferase DNMT3A provides specificity in the system by depositing DNA methylation at adjacent “shores” of hypomethylated bivalent CpG islands (CGI) in mouse embryonic stem cells (mESCs). DNMT3A1‐directed methylation appears to be instructive in maintaining the H3K27me3 profile at the hypomethylated bivalent CGI promoters of developmentally important genes.  相似文献   

15.
16.
17.
18.
To study the dynamics of 5-methylcytosine and 5-hydroxymethylcytosine in zygotes, the parental origin of the pronuclei needs to be determined. To this end the use of the asymmetric distribution of histone modifications in pronuclei is becoming more popular. Here, we demonstrated that histone 3 lysine 27 di-tri-methylation shows a stable pattern being present in the maternal but not in the paternal pronucleus of bovine zygotes, even in late stages of pronuclear development. In contrast, the pattern of histone 3 lysine 9 tri-methylation is very variable, and therefore cannot be used to reliably determine the parental origin of bovine pronuclei.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号