首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In birds, energy supply during growth is a major predictor of the fledglings' physical condition and survival prospects. Differential quantity and quality of fledglings produced under varying nestling food supplies are likely to affect the number of offspring that recruit into the breeding population. However, the underlying mechanisms and associated consequences are still poorly known. Using a partial cross‐fostering and food supplementation experiment, we estimated the effect of variation in food supply during growth on nestling survival and fledgling phenotypic traits of Little Owls Athene noctua. Survival to fledging was much higher in food‐supplemented nestlings (98.6%) than in control nestlings (82.4%). Furthermore, supplemented nestlings were on average 8.9 g heavier and were more likely to develop subcutaneous fat deposits (99.4 vs. 73.7% of treatment and control nestlings, respectively). Supplemented nestlings also had on average longer wings than control nestlings, but tarsi and culmen did not differ significantly. Furthermore, experimentally supplemented fledglings struggled more when handled and emerged sooner from tonic immobility than control fledglings. The irises of supplemented fledglings were less intensely coloured. The experimentally induced changes in nestling development probably affect individual performance beyond fledging. Nestlings from orchard‐dominated habitats were larger than those from habitats dominated by arable land. As nestling food supply is largely determined by natural food availability, we conclude that habitat quality affects Little Owl productivity and offspring quality, and ultimately, population dynamics.  相似文献   

2.
The effects of early environmental conditions can profoundly affect individual development and adult phenotype. In birds, limiting resources can affect growth as nestlings, but also fitness and survival as adults. Following periods of food restriction, individuals may accelerate development, undergoing a period of rapid “catch-up” growth, in an attempt to reach the appropriate size at adulthood. Previous studies of altricial birds have shown that catch-up growth can have negative consequences in adulthood, although this has not been explored in species with different developmental strategies. Here, we investigated the effects of resource limitation and the subsequent period of catch-up growth, on the morphological and metabolic phenotype of adult Japanese quail (Coturnix japonica), a species with a precocial developmental strategy. Because males and females differ in adult body size, we also test whether food restriction had sex-specific effects. Birds that underwent food restriction early in development had muscles of similar size and functional maturity, but lower adult body mass than controls. There was no evidence of sex-specific sensitivity of food restriction on adult body mass; however, there was evidence for body size. Females fed ad lib were larger than males fed ad lib, while females subjected to food restriction were of similar size to males. Adults that had previously experienced food restriction did not have an elevated metabolic rate, suggesting that in contrast to altricial nestlings, there was no metabolic carry-over effect of catch-up growth into adulthood. While Japanese quail can undergo accelerated growth after re-feeding, timing of food restriction may be important to adult size, particularly in females. However, greater developmental flexibility compared to altricial birds may contribute to the lack of metabolic carryover effects at adulthood.  相似文献   

3.
Alarm calling by parents is widespread among animals and has strong implications for parent and offspring fitness, yet it is virtually unknown whether parental alarm calls can initiate a corticosterone response in offspring. We investigated whether parental alarm calls of the white‐crowned sparrow, Zonotrichia leucophrys, activated the corticosterone response of their nest‐bound young, as such a response might prepare older nestlings for premature fledging and increase their survival when contacted by a predator at the nest. We conducted an experiment in which nestlings were either exposed to parent alarm calls (treatment) or experienced a period without parental alarm calls (control) immediately prior to blood sampling. We then sampled nestlings to measure corticosterone levels within 4 min of first contact (baseline corticosterone) and 60 min later (handling‐induced corticosterone). Young nestlings (i.e. 3–4 d post‐hatch) did not exhibit a corticosterone response to parental alarm calls or to handling, as mean corticosterone levels were similar in the control and treatment groups for both baseline and 60‐min post‐baseline samples. Against our predictions, there was no difference in mean levels of baseline corticosterone between control and treatment groups in older nestlings (i.e. 7?8 d post‐hatch) that were capable of surviving out of the nest. However, we did find a significant increase in mean levels of corticosterone after handling in both groups, which indicated that older nestlings were able to mount a functional corticosterone response when confronted with a potential predator. Why older nestlings did not initiate a corticosterone response after exposure to parental alarm calls is unclear but may have occurred because the costs of mounting such a response outweighed the benefits, perhaps because of growth or developmental costs.  相似文献   

4.
In this study we examined hormonal responses of Black-legged Kittiwake (Rissatridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short- and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks. Accepted: 13 April 1999  相似文献   

5.
Hoover JP  Reetz MJ 《Oecologia》2006,149(1):165-173
Interspecific brood parasitism in birds presents a special problem for the host because the parasitic offspring exploit their foster parents, causing them to invest more energy in their current reproductive effort. Nestling brown-headed cowbirds (Molothrus ater) are a burden to relatively small hosts and may reduce fledgling quality and adult survival. We documented food-provisioning rates of one small host, the prothonotary warbler (Protonotaria citrea), at broods that were similar in age (containing nestlings 8–9 days old), but that varied in composition (number of warbler and cowbird nestlings) and mass, and measured the effect of brood parasitism on offspring recruitment and adult returns in the host. The rate of food provisioning increased with brood mass, and males and females contributed equally to feeding nestlings. Controlling for brood mass, the provisioning rate was higher for nests with cowbirds than those without. Recruitment of warbler fledglings from unparasitized nests was 1.6 and 3.7 times higher than that of fledglings from nests containing one or two cowbirds, respectively. Returns of double-brooded adult male and female warblers decreased with an increase in the number of cowbirds raised, but the decrease was more pronounced in males. Reduced returns of warbler adults and recruitment of warbler fledglings with increased cowbird parasitism was likely a result of reduced survival. Cowbird parasitism increased the warblers’ investment in current reproductive effort, while exerting additional costs to current reproduction and residual reproductive value. Our study provides the strongest evidence to date for negative effects of cowbird parasitism on recruitment of host fledglings and survival of host adults.  相似文献   

6.
《Hormones and behavior》2010,57(5):510-518
In the polymorphic white-throated sparrow (Zonotrichia albicollis), tan-striped males provision nestlings at higher rates than do white-striped males. In a previous study, we found that tan-striped males had lower baseline corticosterone levels than white-striped males during the nestling stage. To determine if this variation in corticosterone influences morph-specific differences in nestling provisioning behavior, we used intraperitoneal osmotic pumps to increase baseline corticosterone levels in tan-striped males (TS CORT) and administer RU486, a glucocorticoid receptor antagonist, in white-striped males (WS RU486). These manipulations essentially reversed morph-specific nestling provisioning behavior in males. TS CORT males fed nestlings at lower rates than TS controls (vehicle-only implant), and at similar rates to WS controls (vehicle-only implant), while WS RU486 males fed nestlings at higher rates than WS controls, and at similar rates to TS controls. These results demonstrate that (1) increases in baseline corticosterone (i.e., below concentrations associated with the adrenocortical response to stress) can directly or indirectly inhibit nestling provisioning behavior, and (2) corticosterone influences morph-specific variation in parental behavior in male white-throated sparrows. This study contributes to the growing evidence that modulating baseline CORT mediates parental care and self-maintenance activities in birds, and thus may serve as a mechanism for balancing current reproductive success with survival.  相似文献   

7.
In the polymorphic white-throated sparrow (Zonotrichia albicollis), tan-striped males provision nestlings at higher rates than do white-striped males. In a previous study, we found that tan-striped males had lower baseline corticosterone levels than white-striped males during the nestling stage. To determine if this variation in corticosterone influences morph-specific differences in nestling provisioning behavior, we used intraperitoneal osmotic pumps to increase baseline corticosterone levels in tan-striped males (TS CORT) and administer RU486, a glucocorticoid receptor antagonist, in white-striped males (WS RU486). These manipulations essentially reversed morph-specific nestling provisioning behavior in males. TS CORT males fed nestlings at lower rates than TS controls (vehicle-only implant), and at similar rates to WS controls (vehicle-only implant), while WS RU486 males fed nestlings at higher rates than WS controls, and at similar rates to TS controls. These results demonstrate that (1) increases in baseline corticosterone (i.e., below concentrations associated with the adrenocortical response to stress) can directly or indirectly inhibit nestling provisioning behavior, and (2) corticosterone influences morph-specific variation in parental behavior in male white-throated sparrows. This study contributes to the growing evidence that modulating baseline CORT mediates parental care and self-maintenance activities in birds, and thus may serve as a mechanism for balancing current reproductive success with survival.  相似文献   

8.
A fundamental assumption of sexual selection theory is that the reproductive advantage of large size is balanced by a survival disadvantage. Previous studies of the sexually size-dimorphic red-winged blackbird ( Agelaius phoeniceus ) have indicated that the largest adult males have a survival advantage, suggesting that the limit to male size may be the cost of getting big rather than the cost of being big. If the cost of getting big limits male size, then starvation rates for male nestlings should exceed those of female nestlings. In addition, given high heritability of body size, larger parents should lose more nestlings, particularly males, to starvation. We tested these predictions for red-winged blackbirds using data on the sex of 1356 fledglings from 465 nests collected over 10 years. We found no disadvantage for male nestlings relative to females – 49% of fledglings were male and previous research had shown that 48% of hatchlings are male. We also found no disadvantage for male nestlings that would become large adults (i.e. those with larger parents) – partial brood loss and fledging sex ratios did not vary with mid-parent size. Given no apparent disadvantage to large size for males either as adults or as nestlings, this leaves only the period between fledging and adulthood during which natural selection might limit sexual size dimorphism, although other mechanisms might explain the failure to find a limit to male size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 353–361.  相似文献   

9.
Maternally-derived glucocorticoids can modify the normal development of young animals. To date, little is known about maternal effects that are mediated by acute embryonic exposure to glucocorticoids. In birds, elevated maternal transmission of corticosterone (CORT) to egg albumen is mainly dependent on acute stress. In this study, we increased CORT levels in the egg albumen of a wild passerine, the great tit (Parus major), breeding in favourable deciduous and less suitable coniferous habitat. Subsequently we measured the somatic growth, baseline and acute glucocorticoid responses, immunity and behaviour of prenatally manipulated offspring with respect to control siblings. We found that prenatally CORT-exposed nestlings had lower baseline CORT levels, a more rapid decline in CORT during recovery from a standardized stressor, and a reduced heterophil/lymphocyte ratio compared with controls. Although stress-induced total CORT levels remained unchanged, free CORT levels were significantly lower and the levels of corticosteroid binding globulins (CBG) significantly higher in experimental offspring. Prenatally CORT-exposed offspring begged longer after hatching than controls. Stress-induced behavioural activity of fledglings did not differ between treatments, while its association with baseline CORT levels was significant in the control group only. The body mass and tarsus length of fledglings was positively affected by manipulation in unfavourable coniferous habitat only. We conclude that maternal effects related to elevated levels of albumen CORT modify diverse aspects of offspring phenotype and potentially increase offspring performance in resource poor environments. Moreover, our results indicate that maternal glucocorticoids may suppress the effect of hormones on behavioural responses.  相似文献   

10.
A central goal in evolutionary ecology is to characterize and identify selection patterns on the optimal phenotype in different environments. Physiological traits, such as hormonal responses, provide important mechanisms by which individuals can adapt to fluctuating environmental conditions. It is therefore expected that selection shapes hormonal traits, but the strength and the direction of selection on plastic hormonal signals are still under investigation. Here, we determined whether, and in which way, selection is acting on the hormones corticosterone and prolactin by characterizing endocrine phenotypes and their relationship with fitness in free‐living great tits, Parus major. We quantified variation in circulating concentrations of baseline and stress‐induced corticosterone and in prolactin during the prebreeding (March) and the breeding season (May) for two consecutive years, and correlated these with reproductive success (yearly fledgling number) and overwinter survival in female and male individuals. In both years, individuals with high baseline corticosterone concentrations in March had the highest yearly fledgling numbers; while in May, individuals with low baseline corticosterone had the highest yearly reproductive success. Likewise, individuals that displayed strong seasonal plasticity in baseline corticosterone concentrations (high in March and low in May) had the highest reproductive success in each year. Prolactin concentrations were not related to reproductive success, but were positively correlated to the proximity to lay. Between‐year plasticity in stress‐induced corticosterone concentrations of males was related to yearly variation in food abundance, but not to overall reproductive success. These findings suggest that seasonally alternating directional selection is operating on baseline corticosterone concentrations in both sexes. The observed between‐year consistency in selection patterns indicates that a one‐time hormone sample in a given season can allow the prediction of individual fitness.  相似文献   

11.
Measuring individual quality in vertebrates is difficult. Focusing on allostasis mechanisms may be useful because they are functionally involved in the ability of an individual to survive and reproduce in its environment. Thus, a rise in stress hormones levels (corticosterone) occurs when an organism has to cope with challenging environmental conditions. This has recently led to the proposal of the ‘cort–fitness hypothesis’, which suggests that elevated baseline corticosterone levels should be found in individuals of poor quality that have difficulty coping with their environment. We tested this hypothesis by comparing an integrative measure of individual quality to baseline corticosterone in black-browed albatrosses (Thalassarche melanophrys). We found that individual baseline corticosterone levels were related to individual quality and highly repeatable from one breeding season to the next. Importantly, this relationship was found in males, but not in females. Therefore, we suggest that the relationship between quality and baseline corticosterone levels may depend on the environmental and energetic constraints that individuals have to cope with.  相似文献   

12.
Highly plastic endocrine traits are thought to play a central role in allowing organisms to respond rapidly to environmental change. Yet, not all individuals display the same degree of plasticity in these traits, and the costs of this individual variation in plasticity are unknown. We studied individual differences in corticosterone levels under varying conditions to test whether there are consistent individual differences in (1) baseline corticosterone levels; (2) plasticity in the hormonal response to an ecologically relevant stressor (food restriction); and (3) whether individual differences in plasticity are related to fitness costs, as estimated by oxidative stress levels. We took 25 wild-caught house sparrows into captivity and assigned them to repeated food restricted and control treatments (60% and 110% of their daily food intake), such that each individual experienced both food restricted and control diets twice. We found significant individual variation in baseline corticosterone levels and stress responsiveness, even after controlling for changes in body mass. However, these individual differences in hormonal responsiveness were not related to measures of oxidative stress. These results have implications for how corticosterone levels may evolve in natural populations and raise questions about what we can conclude from phenotypic correlations between hormone levels and fitness measures.  相似文献   

13.
Exposure to maternally derived glucocorticoids during embryonic development impacts offspring phenotype. Although many of these effects appear to be transiently 'negative', embryonic exposure to maternally derived stress hormones is hypothesized to induce preparative responses that increase survival prospects for offspring in low-quality environments; however, little is known about how maternal stress influences longer-term survival-related performance traits in free-living individuals. Using an experimental elevation of yolk corticosterone (embryonic signal of low maternal quality), we examined potential impacts of embryonic exposure to maternally derived stress on flight performance, wing loading, muscle morphology and muscle physiology in juvenile European starlings (Sturnus vulgaris). Here we report that fledglings exposed to experimentally increased corticosterone in ovo performed better during flight performance trials than control fledglings. Consistent with differences in performance, individuals exposed to elevated embryonic corticosterone fledged with lower wing loading and had heavier and more functionally mature flight muscles compared with control fledglings. Our results indicate that the positive effects on a survival-related trait in response to embryonic exposure to maternally derived stress hormones may balance some of the associated negative developmental costs that have recently been reported. Moreover, if embryonic experience is a good predictor of the quality or risk of future environments, a preparative phenotype associated with exposure to apparently negative stimuli during development may be adaptive.  相似文献   

14.
Hormones mediate major physiological and behavioural components of the reproductive phenotype of individuals. To understand basic evolutionary processes in the hormonal regulation of reproductive traits, we need to know whether, and during which reproductive phases, individual variation in hormone concentrations relates to fitness in natural populations. We related circulating concentrations of prolactin and corticosterone to parental behaviour and reproductive success during both the pre-breeding and the chick-rearing stages in both individuals of pairs of free-living house sparrows, Passer domesticus. Prolactin and baseline corticosterone concentrations in pre-breeding females, and prolactin concentrations in pre-breeding males, predicted total number of fledglings. When the strong effect of lay date on total fledgling number was corrected for, only pre-breeding baseline corticosterone, but not prolactin, was negatively correlated with the reproductive success of females. During the breeding season, nestling provisioning rates of both sexes were negatively correlated with stress-induced corticosterone levels. Lastly, individuals of both sexes with low baseline corticosterone before and high baseline corticosterone during breeding raised the most offspring, suggesting that either the plasticity of this trait contributes to reproductive success or that high parental effort leads to increased hormone concentrations. Thus hormone concentrations both before and during breeding, as well as their seasonal dynamics, predict reproductive success, suggesting that individual variation in absolute concentrations and in plasticity is functionally significant, and, if heritable, may be a target of selection.  相似文献   

15.
Young birds often face poor food supply, which reduces their growth and development. However, if the shortage of resources is only temporary, there is a possibility to adjust the growth trajectory of morphological traits after the end of the short-term limitation period. The two main ways of compensatory growth are delayed development (parallel growth) and growth acceleration (catch-up growth). Parallel growth has been widely demonstrated in birds, but the presence of catch-up growth in altricial species has been questioned. However, most experiments have been conducted in laboratory conditions. We manipulated the food supply of nestling collared flycatchers Ficedula albicollis in the wild by removing the male parent for three days at 4–7 days of chick age. We performed early partial swapping to control for origin effects on growth, and total swapping after the period of food limitation to ensure similar late growth environment for deprived and control chicks. Both body mass and tarsus length of deprived chicks was negatively affected by the food scarcity. Body mass showed efficient catch-up growth, but this compensation was absent in skeletal size. Body mass is an important determinant of postfledging survival in this long-distance migrant. Further studies are needed in a variety of species to examine developmental plasticity in relation to age at food scarcity and the allocation hierarchy of various morphological traits.  相似文献   

16.
Several studies on birds have proposed that a lack of invertebrate prey in urbanized areas could be the main cause for generally lower levels of breeding success compared to rural habitats. Previous work on house sparrows Passer domesticus found that supplemental feeding in urbanized areas increased breeding success but did not contribute to population growth. Here, we hypothesize that supplementary feeding allows house sparrows to achieve higher breeding success but at the cost of lower nestling quality. As abundant food supplies may permit both high‐ and low‐quality nestlings to survive, we also predict that within‐brood variation in proxies of nestling quality would be larger for supplemental food broods than for unfed broods. As proxies of nestling quality, we considered feather corticosterone (CORTf), body condition (scaled mass index, SMI), and tarsus‐based fluctuating asymmetry (FA). Our hypothesis was only partially supported as we did not find an overall effect of food supplementation on FA or SMI. Rather, food supplementation affected nestling phenotype only early in the breeding season in terms of elevated CORTf levels and a tendency for more variable within‐brood CORTf and FA. Early food supplemented nests therefore seemed to include at least some nestlings that faced increased stressors during development, possibly due to harsher environmental (e.g., related to food and temperature) conditions early in the breeding season that would increase sibling competition, especially in larger broods. The fact that CORTf was positively, rather than inversely, related to nestling SMI further suggests that factors influencing CORTf and SMI are likely operating over different periods or, alternatively, that nestlings in good nutritional condition also invest in high‐quality feathers.  相似文献   

17.
Fluctuating asymmetry (FA) has been widely used as a stress-related phenotypic marker of developmental instability. However, previous studies relating FA to various stressful conditions have produced inconsistent results and we still lack quantitative individual-level evidence that high FA is related to stress in wild vertebrate species. We studied how baseline plasma levels of corticosterone predicted FA of wing and tail feathers in free-living Eurasian treecreeper (Certhia familiaris) nestlings. We found a sex-specific association between corticosterone levels and FA: high corticosterone levels were related to an increased FA in male but not in female nestlings. These results suggest that in treecreepers, FA may correlate with individual stress hormone levels, male developmental trajectory being potentially more sensitive to stress than that of the female.  相似文献   

18.
Parasite chicks from non-evictor species usually try to monopolize host parental care, thereby increasing considerably the level of food competition in the nest. Here, we propose that brood parasitism is an important stressor for host and parasite nestlings and explore this hypothesis in the non-evictor great spotted cuckoo (Clamator glandarius) and its main hosts, the same-sized black-billed magpie (Pica pica) and the larger carrion crow (Corvus corone). We experimentally created 3-nestling broods of different brood compositions (only cuckoo chicks, only host chicks, or cuckoo and host chicks together) and measured baseline corticosterone levels of nestlings along their developmental period (early, middle and late). We found that brood parasitism increased corticosterone levels in magpie nestlings in the mid and late nestling period compared to those raised in unparasitized nests. Interestingly, carrion crow nestlings from parasitized nests only increased their corticosterone levels in the mid nestling period, when the competition for food with the cuckoo nestling was highest. Our results suggest that brood parasitism could be a potential physiological stressor for host nestlings, especially during the developmental stages where food requirements are highest. Conversely, cuckoo nestlings could be physiologically adapted to high competition levels since they did not show significant differences in corticosterone levels in relation to brood composition.  相似文献   

19.
Plasma levels of corticosterone often mirror changes in body condition and parental effort. In seabirds, the brooding of young chicks is often paralleled by a marked decline in adult body condition. This may reflect the trade-off between the needs of the chick to be fed regularly and brooded, and that of the adult to spend enough time at sea to restore its body reserves and find food for the chick. In this paper, we describe changes in body condition and baseline corticosterone levels in a tropical seabird, the Red-footed Booby Sula sula , in which the chick is continuously brooded for 5–6 weeks. Body condition did not decline during the brooding period. Female body condition remained stable throughout breeding whereas male body condition declined significantly during the late chick-rearing period. Baseline corticosterone levels were low during the prelaying phase, increased significantly during incubation and were highest during the brooding period. Later in the chick-rearing period, baseline corticosterone levels decreased markedly in females, but stayed elevated in males. There was no correlation between baseline corticosterone and body condition. Because of the chick's slow growth and reduced daily need for food, brooding in Red-footed Boobies may not require a marked increase in parental effort, and the rise in corticosterone levels is probably more a reflection of slight changes in foraging activity. Red-footed Booby males are 15% smaller than females and we suggest that the decline in male body condition during the late chick-rearing period is likely to result from higher energetic flight costs or a lower foraging efficiency imposed by a smaller body size.  相似文献   

20.
While evidence is accumulating that stress-induced glucocorticoid responses help organisms to quickly adjust their physiology and behaviour to life-threatening environmental perturbations, the function and the ecological factors inducing variation in baseline glucocorticoid levels remain poorly understood. In this study we investigated the effects of brood size by experimentally manipulating the number of nestlings per brood and the effect of weather condition on baseline corticosterone levels of nestling Alpine swifts (Apus melba). We also examined the potential negative consequences of an elevation of baseline corticosterone on nestling immunity by correlating corticosterone levels with ectoparasite intensity and the antibody production towards a vaccine. Although nestlings reared in enlarged broods were in poorer condition than nestlings reared in reduced broods, they showed similar baseline corticosterone levels. In contrast, nestling baseline corticosterone levels were higher immediately after cold and rainy episodes with strong winds. Neither nestling infestation rate by ectoparastic flies nor nestling antibody production against a vaccine was correlated with baseline corticosterone levels. Thus, our results suggest that altricial Alpine swift nestlings can quickly modulate baseline corticosterone levels in response to unpredictable variations in meteorological perturbation but not to brood size which may be associated with the degree of sibling competition. Apparently, short-term elevations of baseline corticosterone have no negative effects on nestling immunocompetence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号