首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scaffold proteins have been established as important mediators of signal transduction specificity. The insulin receptor substrate (IRS) proteins represent a critical group of scaffold proteins that are required for signal transduction by the insulin receptor, including the activation of phosphatidylinositol 3 kinase. The c-Jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) represent a different group of scaffold molecules that are implicated in the regulation of the JNK. These two signaling pathways are functionally linked because JNK can phosphorylate IRS1 on the negative regulatory site Ser-307. Here we demonstrate the physical association of these signaling pathways using a proteomic approach that identified insulin-regulated complexes of JIPs together with IRS scaffold proteins. Studies using mice with JIP scaffold protein defects confirm that the JIP1 and JIP2 proteins are required for normal glucose homeostasis. Together, these observations demonstrate that JIP proteins can influence insulin-stimulated signal transduction mediated by IRS proteins.The c-Jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) are implicated in the regulation of the JNK signal transduction pathway (8, 28). The JIP1 and JIP2 proteins are structurally related with similar modular domains (SH3 and PTB) and binding sites for the mixed-lineage protein kinase (MLK) group of mitogen-activated protein kinase (MAPK) kinase kinases, the MAPK kinase MKK7, and JNK (19). These JIP proteins also interact with the microtubule motor protein kinesin, several guanine nucleotide exchange factors, the phosphatase MKP7, Src-related protein kinases, and AKT to form multifunctional protein complexes (19).One potential physiological role of JIP scaffold proteins is the response to metabolic stress, insulin resistance, and diabetes. Several lines of evidence support this hypothesis. First, JIP1 is required for metabolic stress-induced activation of JNK in white adipose tissue (12). Second, MLKs that interact with JIP proteins are implicated as essential components of a signaling pathway that mediates the effects of metabolic stress on JNK activation (13). Third, studies have demonstrated that the human Jip1 gene may contribute to the development of type 2 diabetes, because a Jip1 missense mutation was found to segregate with type 2 diabetes (26). Collectively, these data suggest that JIP proteins play a role in the cellular response to metabolic stress and the regulation of insulin resistance.It is established that the insulin receptor substrate (IRS) group of scaffold proteins plays a central role in insulin signaling (27). Treatment of cells with insulin causes tyrosine phosphorylation of the insulin receptor, the recruitment of IRS proteins to the insulin receptor, and the subsequent tyrosine phosphorylation of IRS proteins on multiple residues that act as docking sites for insulin-regulated signaling molecules, including phosphatidylinositol 3 kinase (27). Negative regulation of IRS proteins is implicated as a mechanism of insulin resistance and can be mediated by multiple pathways, including IRS protein phosphorylation and degradation. Thus, the mTOR/p70S6K (21, 22, 24) and the SOCS-1/3 (20) signaling pathways can regulate IRS protein degradation. Multisite phosphorylation on Ser/Thr residues can also regulate IRS protein function, including JNK phosphorylation of IRS1 on the inhibitory site Ser-307 that prevents recruitment of IRS1 to the activated insulin receptor (2).The IRS and JIP groups of scaffold proteins may function independently to regulate JNK-dependent and insulin-dependent signal transduction. However, functional connections between these scaffold proteins have been identified. Thus, studies using Jip1/ mice demonstrate that JIP1 is required for high-fat-diet-induced JNK activation in white adipose tissue, IRS1 phosphorylation on the inhibitory site Ser-307, and insulin resistance (12). These data suggest that JIP scaffold proteins function cooperatively with IRS proteins to regulate signal transduction by the insulin receptor. The purpose of this study was to examine cross talk between the JIP and IRS scaffold complexes. We demonstrate that the JIP and IRS scaffold complexes physically interact in an insulin-dependent manner and confirm that JIP proteins influence normal glucose homeostasis.  相似文献   

2.
3.
Protein tyrosine kinase 6 (PTK6) is a nonmyristoylated Src-related intracellular tyrosine kinase. Although not expressed in the normal mammary gland, PTK6 is expressed in a majority of human breast tumors examined, and it has been linked to ErbB receptor signaling and AKT activation. Here we demonstrate that AKT is a direct substrate of PTK6 and that AKT tyrosine residues 315 and 326 are phosphorylated by PTK6. Association of PTK6 with AKT occurs through the SH3 domain of PTK6 and is enhanced through SH2 domain-mediated interactions following tyrosine phosphorylation of AKT. Using Src, Yes, and Fyn null mouse embryonic fibroblasts (SYF cells), we show that PTK6 phosphorylates AKT in a Src family kinase-independent manner. Introduction of PTK6 into SYF cells sensitized these cells to physiological levels of epidermal growth factor (EGF) and increased AKT activation. Stable introduction of active PTK6 into SYF cells also resulted in increased proliferation. Knockdown of PTK6 in the BPH-1 human prostate epithelial cell line led to decreased AKT activation in response to EGF. Our data indicate that in addition to promoting growth factor receptor-mediated activation of AKT, PTK6 can directly activate AKT to promote oncogenic signaling.Protein tyrosine kinase 6 (PTK6; also known as the breast tumor kinase BRK) is an intracellular Src-related tyrosine kinase (9, 48). Human PTK6 was identified in cultured human melanocytes (32) and breast tumor cells (39), while its mouse orthologue was cloned from normal small intestinal epithelial cell RNA (50). Although PTK6 shares overall structural similarity with Src family tyrosine kinases, it lacks an N-terminal myristoylation consensus sequence for membrane targeting (39, 51). As a consequence, PTK6 is localized to different cellular compartments, including the nucleus (14, 15). PTK6 is expressed in normal differentiated epithelial cells of the gastrointestinal tract (34, 42, 51), prostate (14), and skin (51-53). Expression of PTK6 is upregulated in different types of cancers, including breast carcinomas (6, 39, 54), colon cancer (34), ovarian cancer (47), head and neck cancers (33), and metastatic melanoma cells (16). The significance of apparent opposing signaling roles for PTK6 in normal differentiation and cancer is still poorly understood.In human breast tumor cells, PTK6 enhances signaling from members of the ErbB receptor family (10, 29, 30, 36, 40, 49, 54). In the HB4a immortalized human mammary gland luminal epithelial cell line, PTK6 promoted epidermal growth factor (EGF)-induced ErbB3 tyrosine phosphorylation and AKT activation (29). In response to EGF stimulation, PTK6 promoted phosphorylation of the focal adhesion protein paxillin and Rac1-mediated cell migration (10). PTK6 can be activated by the ErbB3 ligand heregulin and promotes activation of extracellular signal-regulated kinase 5 (ERK5) and p38 mitogen-activated protein kinase (MAPK) in breast cancer cells (40). PTK6 can also phosphorylate p190RhoGAP-A and stimulate its activity, leading to RhoA inactivation and Ras activation and thereby promoting EGF-dependent breast cancer cell migration and proliferation (49). Expression of PTK6 has been correlated with ErbB2 expression in human breast cancers (4, 5, 54).AKT (also called protein kinase B) is a serine-threonine kinase that is activated downstream of growth factor receptors (38). It is a key player in signaling pathways that regulate energy metabolism, proliferation, and cell survival (7, 45). Aberrant activation of AKT through diverse mechanisms has been discovered in different cancers (2). AKT activation requires phosphorylation of AKT on threonine residue 308 and serine residue 473. The significance of phosphorylation of AKT on tyrosine residues is less well understood. Src has been shown to phosphorylate AKT on conserved tyrosine residues 315 and 326 near the activation loop (11). Substitution of these two tyrosine residues with phenylalanine abolished AKT kinase activity stimulated by EGF (11). Use of the Src family inhibitor PP2 impaired AKT activation following IGF-1 stimulation of oligodendrocytes (13). The RET/PTC receptor tyrosine kinase that responds to glial cell-line-derived neurotrophic factor also phosphorylated AKT tyrosine residue 315 promoting activation of AKT (28). AKT tyrosine residue 474 was phosphorylated when cells were treated with the tyrosine phosphatase inhibitor pervanadate, and phosphorylation of tyrosine 474 contributed to full activation of AKT (12). Recently, the nonreceptor tyrosine kinase Ack1 was shown to regulate AKT tyrosine phosphorylation and activation (37).Here we show that AKT is a cytoplasmic substrate of the intracellular tyrosine kinase PTK6. We identify the tyrosine residues on AKT that are targeted by PTK6, and we demonstrate that tyrosine phosphorylation plays a role in regulating association between PTK6 and AKT. In addition, we show that PTK6 promotes AKT activation and cell proliferation in a Src-independent manner.  相似文献   

4.
Mcl-1 is a member of the Bcl2-related protein family that is a critical mediator of cell survival. Exposure of cells to stress causes inhibition of Mcl-1 mRNA translation and rapid destruction of Mcl-1 protein by proteasomal degradation mediated by a phosphodegron created by glycogen synthase kinase 3 (GSK3) phosphorylation of Mcl-1. Here we demonstrate that prior phosphorylation of Mcl-1 by the c-Jun N-terminal protein kinase (JNK) is essential for Mcl-1 phosphorylation by GSK3. Stress-induced Mcl-1 degradation therefore requires the coordinated activity of JNK and GSK3. Together, these data establish that Mcl-1 functions as a site of signal integration between the proapoptotic activity of JNK and the prosurvival activity of the AKT pathway that inhibits GSK3.Mcl-1 is an antiapoptotic member of the Bcl2 family. Gene knockout studies of mice demonstrate that Mcl-1 is essential for embryonic development and for the survival of hematopoietic cells (28-30). Studies of the stress response have demonstrated that Mcl-1 plays an important role in the sensitization of cells to apoptotic signals (1, 11, 25). Thus, exposure to UV radiation causes the rapid degradation of Mcl-1 and the release of proapoptotic partner proteins from Mcl-1 complexes (e.g., Bim). The mechanism of rapid Mcl-1 destruction is mediated by the combined actions of two different pathways. First, the exposure to stress causes phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2α) on the inhibitory site Ser-51 that prevents translation of Mcl-1 mRNA (1, 11, 25). Second, Mcl-1 is rapidly degraded by the ubiquitin-dependent proteasome pathway (27). Together, these pathways cause a rapid reduction in Mcl-1 expression. This loss of Mcl-1 may be a required initial response for the apoptosis of cells exposed to stress (25).The E3 ubiquitin protein ligase Mule/ARF-BP1 contains a BH3 domain that interacts with Mcl-1 and can initiate ubiquitin-dependent degradation of Mcl-1 (39). Recent studies have demonstrated that rapid stress-induced degradation of Mcl-1 is mediated by an alternative pathway involving the E3 ubiquitin protein ligase β-TrCP, which binds a stress-induced phosphodegron created by the phosphorylation of Mcl-1 by glycogen synthase kinase 3 (GSK3) (7, 21). How the exposure to stress causes GSK3-mediated phosphorylation of Mcl-1 is unclear, but GSK3 has been shown to directly phosphorylate Mcl-1 (7, 21). Mcl-1 phosphorylation and degradation may therefore be controlled by the prosurvival AKT pathway, which can negatively regulate GSK3 (7, 21).Mcl-1 is critically involved in the regulation of cell survival and is therefore subject to regulation by multiple mechanisms (26). Thus, Mcl-1 gene expression is regulated by many growth factors and cytokines (26), and Mcl-1 mRNA is regulated by microRNA pathways (24). The Mcl-1 protein is stabilized by binding TCTP (20) and the BH3-only protein Bim (4). In contrast, the BH3-only protein Noxa binds and destabilizes Mcl-1 (4, 36). Moreover, it is established that Mcl-1 is phosphorylated by several protein kinases on sites that may regulate Mcl-1 function. Phosphorylation of human Mcl-1 (hMcl-1) on Ser-64 (a site that is not conserved in other species) may enhance antiapoptotic activity by increasing the interaction of Mcl-1 with Bim, Noxa, and Bak (18). Phosphorylation on Ser-121 and Thr-163 may inhibit the antiapoptotic activity of hMcl-1 (15), and phosphorylation on Thr-163 may increase hMcl-1 protein stability (9). The conserved GSK3 phosphorylation site Ser-159 (and possibly Ser-155) can initiate rapid proteasomal degradation of hMcl-1 (7, 21). Together, these findings suggest that the function of Mcl-1 is very tightly regulated.The results of previous studies have implicated the c-Jun N-terminal protein kinase (JNK) in the regulation of Mcl-1 (15, 18). The purpose of this study was to test whether Mcl-1 is a target of signal transduction by JNK. We demonstrate that a key function of JNK is to prime Mcl-1 for phosphorylation by GSK3. JNK is required for GSK3-mediated degradation of Mcl-1 in response to stress. Coordinated regulation of the stress-activated JNK pathway and the AKT-inhibited GSK3 pathway is therefore required for stress-induced Mcl-1 degradation.  相似文献   

5.
6.
7.
KSR1 is a mitogen-activated protein (MAP) kinase scaffold that enhances the activation of the MAP kinase extracellular signal-regulated kinase (ERK). The function of KSR1 in NK cell function is not known. Here we show that KSR1 is required for efficient NK-mediated cytolysis and polarization of cytolytic granules. Single-cell analysis showed that ERK is activated in an all-or-none fashion in both wild-type and KSR1-deficient cells. In the absence of KSR1, however, the efficiency of ERK activation is attenuated. Imaging studies showed that KSR1 is recruited to the immunological synapse during T-cell activation and that membrane recruitment of KSR1 is required for recruitment of active ERK to the synapse.Kinase suppressor of Ras was originally identified in Drosophila melanogaster (53) and Caenorhabditis elegans (19, 32, 52) as a positive regulator of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway. It is thought to function as a MAP kinase scaffold because it can bind to Raf, MEK, and ERK (18, 19, 27, 28, 44, 59). While the exact function of KSR is unknown, preassembling the three components of the ERK MAP kinase cascade could function to enhance the efficiency of ERK activation, potentially regulate the subcellular location of ERK activation, and promote access to specific subcellular substrates (16, 45, 46).While only one isoform of KSR is expressed in Drosophila (53), two KSR isoforms have been identified in C. elegans (19, 32, 52) and most higher organisms. They are referred to as KSR1 and KSR2 (32, 43). While KSR1 mRNA and protein are detectable in a wide variety of cells and tissues, including brain, thymus, and muscle (10, 11, 29), little is known about the expression pattern of KSR2.We previously reported the phenotype of KSR1-deficient mice (30). These mice are born at Mendelian ratios and develop without any obvious defects. Using gel filtration, we showed that KSR1 promotes the formation of large signaling complexes containing KSR1, Raf, MEK, and ERK (30). Using both primary T cells stimulated with antibodies to the T-cell receptor as well as fibroblasts stimulated with growth factors, we showed that KSR1-deficient cells exhibit an attenuation of ERK activation with defects in cell proliferation.Here we explored the role of KSR1 in NK cell-mediated cytolysis. The killing of a target cell by a cytolytic T cell or NK cell is a complicated process that involves cell polarization with microtubule-dependent movement of cytolytic granules to an area that is proximal to the contact surface or immunological synapse (7, 33, 34, 48-50, 54). A variety of different signaling molecules are also involved, including calcium (23), phosphatidylinositol-3,4,5-triphosphate (13, 17), and activation of the ERK MAP kinase (6, 42, 56). Recently, the recruitment of activated ERK to the immunological synapse (IS) has been shown to be a feature of successful killing of a target by cytotoxic T lymphocytes (58).How active ERK is recruited to the synapse is not known. Since KSR1 is known to be recruited to the plasma membrane by Ras activation (24), and since the immunological synapse is one of the major sites of Ras activation (26, 41), it seemed plausible to test the hypothesis that KSR1 recruitment to the plasma membrane functions to recruit ERK to the immunological synapse and facilitate its activation. We found that KSR1 was recruited to the immunological synapse and that KSR1 appeared to be required for the localization of active ERK at the contact site. As KSR1-deficient cells exhibit a defect in killing, this suggests that KSR1 recruitment to the synapse may be important in the cytolytic killing of target cells.  相似文献   

8.
9.
10.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

11.
12.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

13.
14.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. While mTOR complex 1 (mTORC1) regulates mRNA translation and ribosome biogenesis, mTORC2 plays an important role in the phosphorylation and subsequent activation of Akt. Interestingly, mTORC1 negatively regulates Akt activation, but whether mTORC1 signaling directly targets mTORC2 remains unknown. Here we show that growth factors promote the phosphorylation of Rictor (rapamycin-insensitive companion of mTOR), an essential subunit of mTORC2. We found that Rictor phosphorylation requires mTORC1 activity and, more specifically, the p70 ribosomal S6 kinase 1 (S6K1). We identified several phosphorylation sites in Rictor and found that Thr1135 is directly phosphorylated by S6K1 in vitro and in vivo, in a rapamycin-sensitive manner. Phosphorylation of Rictor on Thr1135 did not affect mTORC2 assembly, kinase activity, or cellular localization. However, cells expressing a Rictor T1135A mutant were found to have increased mTORC2-dependent phosphorylation of Akt. In addition, phosphorylation of the Akt substrates FoxO1/3a and glycogen synthase kinase 3α/β (GSK3α/β) was found to be increased in these cells, indicating that S6K1-mediated phosphorylation of Rictor inhibits mTORC2 and Akt signaling. Together, our results uncover a new regulatory link between the two mTOR complexes, whereby Rictor integrates mTORC1-dependent signaling.The mammalian target of rapamycin (mTOR) is an evolutionarily conserved phosphatidylinositol 3-kinase (PI3K)-related Ser/Thr kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate cell growth as well as organ and body size in a variety of organisms (reviewed in references 4, 38, 49, and 77). mTOR was discovered as the molecular target of rapamycin, an antifungal agent used clinically as an immunosuppressant and more recently as an anticancer drug (5, 20). Recent evidence indicates that deregulation of the mTOR pathway occurs in a majority of human cancers (12, 18, 25, 46), suggesting that rapamycin analogs may be potent antineoplastic therapeutic agents.mTOR forms two distinct multiprotein complexes, the rapamycin-sensitive and -insensitive mTOR complexes 1 and 2 (mTORC1 and mTORC2), respectively (6, 47). In cells, rapamycin interacts with FKBP12 and targets the FKBP12-rapamycin binding (FRB) domain of mTORC1, thereby inhibiting some of its function (13, 40, 66). mTORC1 is comprised of the mTOR catalytic subunit and four associated proteins, Raptor (regulatory associated protein of mTOR), mLST8 (mammalian lethal with sec13 protein 8), PRAS40 (proline-rich Akt substrate of 40 kDa), and Deptor (28, 43, 44, 47, 59, 73, 74). The small GTPase Rheb (Ras homolog enriched in brain) is a key upstream activator of mTORC1 that is negatively regulated by the tuberous sclerosis complex 1 (TSC1)/TSC2 GTPase-activating protein complex (reviewed in reference 35). mTORC1 is activated by PI3K and Ras signaling through direct phosphorylation and inactivation of TSC2 by Akt, extracellular signal-regulated kinase (ERK), and p90 ribosomal protein S6 kinase (RSK) (11, 37, 48, 53, 63). mTORC1 activity is also regulated at the level of Raptor. Whereas low cellular energy levels negatively regulate mTORC1 activity through phosphorylation of Raptor by AMP-activated protein kinase (AMPK) (27), growth signaling pathways activating the Ras/ERK pathway positively regulate mTORC1 activity through direct phosphorylation of Raptor by RSK (10). More recent evidence has also shown that mTOR itself positively regulates mTORC1 activity by directly phosphorylating Raptor at proline-directed sites (20a, 75). Countertransport of amino acids (55) and amino acid signaling through the Rag GTPases were also shown to regulate mTORC1 activity (45, 65). When activated, mTORC1 phosphorylates two main regulators of mRNA translation and ribosome biogenesis, the AGC (protein kinase A, G, and C) family kinase p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and thus stimulates protein synthesis and cellular growth (50, 60).The second mTOR complex, mTORC2, is comprised of mTOR, Rictor (rapamycin-insensitive companion of mTOR), mSin1 (mammalian stress-activated mitogen-activated protein kinase-interacting protein 1), mLST8, PRR5 (proline-rich region 5), and Deptor (21, 39, 58, 59, 66, 76, 79). Rapamycin does not directly target and inhibit mTORC2, but long-term treatment with this drug was shown to correlate with mTORC2 disassembly and cytoplasmic accumulation of Rictor (21, 39, 62, 79). Whereas mTORC1 regulates hydrophobic motif phosphorylation of S6K1, mTORC2 has been shown to phosphorylate other members of the AGC family of kinases. Biochemical and genetic evidence has demonstrated that mTORC2 phosphorylates Akt at Ser473 (26, 39, 68, 70), thereby contributing to growth factor-mediated Akt activation (6, 7, 52). Deletion or knockdown of the mTORC2 components mTOR, Rictor, mSin1, and mLST8 has a dramatic effect on mTORC2 assembly and Akt phosphorylation at Ser473 (26, 39, 79). mTORC2 was also shown to regulate protein kinase Cα (PKCα) (26, 66) and, more recently, serum- and glucocorticoid-induced protein kinase 1 (SGK1) (4, 22). Recent evidence implicates mTORC2 in the regulation of Akt and PKCα phosphorylation at their turn motifs (19, 36), but whether mTOR directly phosphorylates these sites remains a subject of debate (4).Activation of mTORC1 has been shown to negatively regulate Akt phosphorylation in response to insulin or insulin-like growth factor 1 (IGF1) (reviewed in references 30 and 51). This negative regulation is particularly evident in cell culture models with defects in the TSC1/TSC2 complex, where mTORC1 and S6K1 are constitutively activated. Phosphorylation of insulin receptor substrate-1 (IRS-1) by mTORC1 (72) and its downstream target S6K1 has been shown to decrease its stability and lead to an inability of insulin or IGF1 to activate PI3K and Akt (29, 69). Although the mechanism is unknown, platelet-derived growth factor receptor β (PDGF-Rβ) has been found to be downregulated in TSC1- and TSC2-deficient murine embryonic fibroblasts (MEFs), contributing to a reduction of PI3K signaling (80). Interestingly, inhibition of Akt phosphorylation by mTORC1 has also been observed in the presence of growth factors other than IGF-1, insulin, or PDGF, suggesting that there are other mechanisms by which mTORC1 activation restricts Akt activity in cells (reviewed in references 6 and 31). Recent evidence demonstrates that rapamycin treatment causes a significant increase in Rictor electrophoretic mobility (2, 62), suggesting that phosphorylation of the mTORC2 subunit Rictor may be regulated by mTORC1 or downstream protein kinases.Herein, we demonstrate that Rictor is phosphorylated by S6K1 in response to mTORC1 activation. We demonstrate that Thr1135 is directly phosphorylated by S6K1 and found that a Rictor mutant lacking this phosphorylation site increases Akt phosphorylation induced by growth factor stimulation. Cells expressing the Rictor T1135A mutant were found to have increased Akt signaling to its substrates compared to Rictor wild-type- and T1135D mutant-expressing cells. Together, our results suggest that Rictor integrates mTORC1 signaling via its phosphorylation by S6K1, resulting in the inhibition of mTORC2 and Akt signaling.  相似文献   

16.
Clade B of the New World arenaviruses contains both pathogenic and nonpathogenic members, whose surface glycoproteins (GPs) are characterized by different abilities to use the human transferrin receptor type 1 (hTfR1) protein as a receptor. Using closely related pairs of pathogenic and nonpathogenic viruses, we investigated the determinants of the GP1 subunit that confer these different characteristics. We identified a central region (residues 85 to 221) in the Guanarito virus GP1 that was sufficient to interact with hTfR1, with residues 159 to 221 being essential. The recently solved structure of part of the Machupo virus GP1 suggests an explanation for these requirements.Arenaviruses are bisegmented, single-stranded RNA viruses that use an ambisense coding strategy to express four proteins: NP (nucleoprotein), Z (matrix protein), L (polymerase), and GP (glycoprotein). The viral GP is sufficient to direct entry into host cells, and retroviral vectors pseudotyped with GP recapitulate the entry pathway of these viruses (5, 13, 24, 31). GP is a class I fusion protein comprising two subunits, GP1 and GP2, cleaved from the precursor protein GPC (4, 14, 16, 18, 21). GP1 contains the receptor binding domain (19, 28), while GP2 contains structural elements characteristic of viral membrane fusion proteins (8, 18, 20, 38). The N-terminal stable signal peptide (SSP) remains associated with the mature glycoprotein after cleavage (2, 39) and plays a role in transport, maturation, and pH-dependent fusion (17, 35, 36, 37).The New World arenaviruses are divided into clades A, B, and C based on phylogenetic relatedness (7, 9, 11). Clade B contains the human pathogenic viruses Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia, and Chapare, which cause severe hemorrhagic fevers in South America (1, 10, 15, 26, 34). Clade B also contains the nonpathogenic viruses Amapari (AMAV), Cupixi, and Tacaribe (TCRV), although mild disease has been reported for a laboratory worker infected with TCRV (29).Studies with both viruses and GP-pseudotyped retroviral vectors have shown that the pathogenic clade B arenaviruses use the human transferrin receptor type 1 (hTfR1) to gain entry into human cells (19, 30). In contrast, GPs from nonpathogenic viruses, although capable of using TfR1 orthologs from other species (1), cannot use hTfR1 (1, 19) and instead enter human cells through as-yet-uncharacterized hTfR1-independent pathways (19). In addition, human T-cell lines serve as useful tools to distinguish these GPs, since JUNV, GTOV, and MACV pseudotyped vectors readily transduce CEM cells, while TCRV and AMAV GP vectors do not (27; also unpublished data). These properties of the GPs do not necessarily reflect a tropism of the pathogenic viruses for human T cells, since viral tropism is influenced by many factors and T cells are not a target for JUNV replication in vivo (3, 22, 25).  相似文献   

17.
Receptor protein tyrosine phosphatase α (RPTPα) is the mitotic activator of the protein tyrosine kinase Src. RPTPα serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPα Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPα pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPα, and intrinsic catalytic activity of RPTPα was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPα was induced in mitosis. GRB2 binding to RPTPα, which was proposed to compete with Src binding to RPTPα, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPα-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPα, illustrating that Src binding to RPTPα is not mediated by a pTyr-SH2 interaction. Mutation of RPTPα Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPα pSer204 facilitates Src binding, leading to RPTPα-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.Protein tyrosine phosphatases (PTPs) are responsible for dephosphorylation of the phosphotyrosyl residues. The human genome contains approximately 100 genes that encode members of the four PTP families, and most of them have mouse orthologues (2, 48). According to their subcellular localization, the classical PTPs, encoded by less than half of the total PTP genes, are divided into two subfamilies: cytoplasmic and receptor protein tyrosine phosphatases (RPTPs). The majority of the RPTPs contain, besides a variable extracellular domain and a transmembrane domain, two highly homologous phosphatase domains (27), with the membrane-proximal domain comprising most of the catalytic activity (33).RPTPα is a typical RPTP with a small, highly glycosylated extracellular domain (13). RPTPα function is regulated by many mechanisms, including proteolysis (18), oxidation (55), dimerization (7, 23, 24, 47, 52), and phosphorylation of serine and tyrosine residues (16, 17, 49). RPTPα is broadly expressed in many cell types, and over the years, RPTPα has been shown to be involved in a number of signaling mechanisms, including neuronal (15) and skeletal muscle (34) cell differentiation, neurite elongation (8, 9, 56), insulin receptor signaling downregulation (3, 28, 30, 31, 35), insulin secretion (25), activation of voltage-gated potassium channel Kv1.2 (51), long-term potentiation in hippocampal neurons (32, 38), matrix-dependent force transduction (53), and cell spreading and migration (21, 45, 57).The majority of the roles played in these cellular processes involve RPTPα''s ability to activate the proto-oncogenes Src and Fyn by dephosphorylating their C-terminal inhibitory phosphotyrosine (5, 15, 39, 45, 61). Normally, this phosphotyrosine (pTyr527 in chicken Src) binds to the Src homology 2 (SH2) domain, keeping the protein in an inactive closed conformation. A displacement mechanism was proposed for RPTPα-mediated Src activation in which pTyr789 of RPTPα is required to bind the SH2 domain of Src before RPTPα dephosphorylates Tyr527 (58). This model is the subject of debate since other studies show that RPTPα lacking Tyr789 is still able to dephosphorylate and activate Src (12, 26, 29, 56). In normal cells, Src reaches its activation peak during mitosis (4, 11, 40, 42), and with the help of overexpressing cells, it was shown that this activation is triggered mainly by RPTPα. The model that emerged is that RPTPα is activated in mitosis due to serine hyperphosphorylation and detaches from the GRB2 scaffolding protein (59, 60) that normally binds most of the pTyr789 of RPTPα via its SH2 domain (14, 17, 46). Two serine phosphorylation sites were mapped in the juxtamembrane domain of RPTPα, Ser180 and Ser204 (49). The kinases that were found responsible for their phosphorylation were protein kinase C delta (PKCdelta) (10) and CaMKIIalpha (9), but there is no clear evidence that these kinases are activated in mitosis. We set out to investigate the role of serine phosphorylation of RPTPα in mitotic activation of Src.We generated phosphospecific antibodies and show that RPTPα pSer204, but not pSer180, is dephosphorylated in mitotic NIH 3T3 and HeLa cells, concomitantly with activation of Src. Selective inhibitors suggested that PP2A was the phosphatase that dephosphorylated pSer204. RNA interference (RNAi)-mediated knockdown of the catalytic subunit of PP2A demonstrated that indeed PP2A was responsible for mitotic dephosphorylation of RPTPα pSer204. It is noteworthy that PP2A is known to be activated in mitosis. Intrinsic PTP activities of RPTPα were similar in unsynchronized and mitotic cells, and mutation of Ser204 did not activate RPTPα in in vitro PTP assays. Yet, Src binding to RPTPα was induced in mitotic NIH 3T3 cells and RPTPα-S204D with a phosphomimicking mutation at Ser204 coimmunoprecipitated less efficiently with Src. Based on our results, we propose a mechanism for mitotic activation of Src that is triggered by dephosphorylation of RPTPα pSer204, resulting in enhanced affinity for Src and subsequent dephosphorylation and activation of Src.  相似文献   

18.
19.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号