首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a twofold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Δhst4Δ double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Δ cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Δ cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage.  相似文献   

2.
The histone acetyltransferase Rtt109 is the sole enzyme responsible for acetylation of histone H3 lysine 56 (H3K56) in fungal organisms. Loss of Rtt109 renders fungal cells extremely sensitive to genotoxic agents, and prevents pathogenesis in several clinically important species. Here, via a high throughput chemical screen of >300,000 compounds, we discovered a chemical inhibitor of Rtt109 that does not inhibit other acetyltransferase enzymes. This compound inhibits Rtt109 regardless of which histone chaperone cofactor protein (Asf1 or Vps75) is present, and appears to inhibit Rtt109 via a tight-binding, uncompetitive mechanism.  相似文献   

3.
In fungal species, lysine 56 of newly synthesized histone H3 molecules is modified by the acetyltransferase Rtt109, which promotes resistance to genotoxic agents. To further explore how H3 K56ac contributes to genome stability, we conducted screens for suppressors of the DNA damage sensitivity of budding yeast rtt109Δ mutants. We recovered a single extragenic suppressor mutation that efficiently restored damage resistance. The suppressor is a point mutation in the histone H3 gene HHT2, and converts lysine 56 to glutamic acid. In some ways, K56E mimics K56ac, because it suppresses other mutations that interfere with the production of H3 K56ac and restores histone binding to chromatin assembly proteins CAF-1 and Rtt106. Therefore, we demonstrate that enhanced association with chromatin assembly factors can be accomplished not only by acetylation-mediated charge neutralization of H3K56 but also by the replacement of the positively charged lysine with an acidic residue. These data suggest that removal of the positive charge on lysine 56 is the functionally important consequence of H3K56 acetylation. Additionally, the suppressive function of K56E requires the presence of a second H3 allele, because K56E impairs growth when it is the sole source of histones, even more so than does constitutive H3K56 acetylation. Our studies therefore emphasize how H3 K56ac not only promotes chromatin assembly but also leads to chromosomal malfunction if not removed following histone deposition.  相似文献   

4.
The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3–H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three his-tone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3–H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3–H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.Key words: Gen5, Rtt109, chromatin, nucleosome assembly, genome integrity  相似文献   

5.
The lysine acetyltransferase (KAT) Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac) in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS) for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z'' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7%) were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could serve as chemical probes or leads for a new class of antifungals targeting an epigenetic enzyme.  相似文献   

6.
In Saccharomyces cerevisiae, Rtt109, a lysine acetyltransferase (KAT), associates with a histone chaperone, either Vps75 or Asf1. It has been proposed that these chaperones alter the selectivity of Rtt109 or which residues it preferentially acetylates. In the present study, we utilized a label-free quantitative mass spectrometry-based method to determine the steady-state kinetic parameters of acetylation catalyzed by Rtt109-Vps75 on H3 monomer, H3/H4 tetramer, and H3/H4-Asf1 complex. These results show that among these histone conformations, only H3K9 and H3K23 are significantly acetylated under steady-state conditions and that Asf1 promotes H3/H4 acetylation by Rtt109-Vps75. Asf1 equally increases the Rtt109-Vps75 specificity for both of these residues with a maximum stoichiometry of 1:1 (Asf1 to H3/H4), but does not alter the selectivity between these two residues. These data suggest that the H3/H4-Asf1 complex is a substrate for Rtt109-Vps75 without altering selectivity between residues. The deletion of either Rtt109 or Asf1 in vivo results in the same reduction of H3K9 acetylation, suggesting that Asf1 is required for efficient H3K9 acetylation both in vitro and in vivo. Furthermore, we found that the acetylation preference of Rtt109-Vps75 could be directed to H3K56 when those histones already possess modifications, such as those found on histones purified from chicken erythrocytes. Taken together, Vps75 and Asf1 both enhance Rtt109 acetylation for H3/H4, although via different mechanisms, but have little impact on the residue selectivity. Importantly, these results provide evidence that histone chaperones can work together via interactions with either the enzyme or the substrate to more efficiently acetylate histones.  相似文献   

7.
Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27, and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ~12?? diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in?vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in?vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3-H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones before deposition.  相似文献   

8.
Rtt109 (Regulator of Ty1 Transposition 109) is a fungal-specific histone acetyltransferase required for modification of histone H3 K9, K27 and K56. These acetylations are associated with nascent histone H3 and play an integral role in replication-coupled and repair-coupled nucleosome assembly. Rtt109 is unique among acetyltransferases as it is activated by a histone chaperone; either Vps75 (Vacuolar Protein Sorting 75) or Asf1 (Anti-silencing Function 1). Recent biochemical, structural and genetic studies have shed light on the intricacies of this activation. It is now clear that Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. This reinforces that Asf1 and Vps75 activate Rtt109 via distinct molecular mechanisms. Structures of Rtt109-Vps75 further imply that Vps75 positions histone H3 in the Rtt109 active site. These structures however raise questions regarding the stoichiometry of the Rtt109-Vps75 complex. This has ramifications for determining the physiological Rtt109 substrate.  相似文献   

9.
The histone chaperone Vps75 presents the remarkable property of stimulating the Rtt109-dependent acetylation of several histone H3 lysine residues within (H3-H4)(2) tetramers. To investigate this activation mechanism, we determined x-ray structures of full-length Vps75 in complex with full-length Rtt109 in two crystal forms. Both structures show similar asymmetric assemblies of a Vps75 dimer bound to an Rtt109 monomer. In the Vps75-Rtt109 complexes, the catalytic site of Rtt109 is confined to an enclosed space that can accommodate the N-terminal tail of histone H3 in (H3-H4)(2). Investigation of Vps75-Rtt109-(H3-H4)(2) and Vps75-(H3-H4)(2) complexes by NMR spectroscopy-probed hydrogen/deuterium exchange suggests that Vps75 guides histone H3 in the catalytic enclosure. These findings clarify the basis for the enhanced acetylation of histone H3 tail residues by Vps75-Rtt109.  相似文献   

10.
Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear. Here, we examined the mechanism of Lys-290 acetylation and found that Rtt109 catalyzes intramolecular autoacetylation of Lys-290 ~200-times slower than H3 acetylation. Deacetylated Rtt109 was prepared by reacting with a sirtuin protein deacetylase, producing an enzyme with negligible HAT activity. Autoacetylation of Rtt109 restored full HAT activity, indicating that autoacetylation is necessary for HAT activity and is a fully reversible process. To dissect the mechanism of activation, biochemical, and kinetic analyses were performed with Lys-290 variants of the Rtt109-Vps75 complex. We found that autoacetylation of Lys-290 increases the binding affinity for acetyl-CoA and enhances the rate of acetyl-transfer onto histone substrates. This study represents the first detailed investigation of a HAT enzyme regulated by single-site intramolecular autoacetylation.  相似文献   

11.
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.  相似文献   

12.
13.
In budding yeast, acetylation of histone H3 lysine 56 (H3-K56) is catalyzed by the Rtt109-Vps75 histone acetyltransferase (HAT) complex, with Rtt109 being the catalytic subunit, and histone chaperone Asf1 is required for this modification. Cells lacking Rtt109 are susceptible to perturbations in DNA replication. However, how Asf1 regulates acetylation of H3-K56 and how loss of H3-K56 acetylation affects DNA replication are unclear. We show that at low concentrations the Rtt109-Vps75 HAT complex acetylates H3-K56 in vitro when H3/H4 is complexed with Asf1, but not H3/H4 tetramers, recapitulating the in vivo requirement of Asf1 for H3-K56 acetylation using recombinant proteins. Moreover, the Rtt109-Vps75 complex interacts with Asf1-H3/H4 but not Asf1. In vivo, the Rtt109-Asf1 interaction is also dependent on the ability of Asf1 to bind H3/H4. Furthermore, the Rtt109 homolog in Schizosaccharomyces pombe (SpRtt109) also displayed an Asf1-dependent H3-K56 HAT activity in vitro. These results indicate that Asf1 regulates H3-K56 acetylation by presenting histones H3 and H4 to Rtt109-Vps575 for acetylation, and this mechanism is likely to be conserved. Finally, we have shown that cells lacking Rtt109 or expressing H3-K56 mutants exhibited significant reduction in the association of three proteins with stalled DNA replication forks and hyper-recombination of replication forks stalled at replication fork barriers of the ribosomal DNA locus compared with wild-type cells. Taken together, these studies provide novel insight into the role of Asf1 in the regulation of H3-K56 acetylation and the function of this modification in DNA replication.  相似文献   

14.
The composition of posttranslational modifications on newly synthesized histones must be altered upon their incorporation into chromatin. These changes are necessary to maintain the same gene expression state at individual chromosomal loci before and after DNA replication. We have examined how one modification that occurs on newly synthesized histone H3, acetylation of K56, influences gene expression at epigenetically regulated loci in Saccharomyces cerevisiae. H3 K56 is acetylated by Rtt109p before its incorporation into chromatin during S phase, and this modification is then removed by the NAD+-dependent deacetylases Hst3p and Hst4p during G2/M phase. We found silenced loci maintain H3 K56 in a hypoacetylated state, and the absence of this modification in rtt109 mutants was compatible with HM and telomeric silencing. In contrast, loss of HST3 and HST4 resulted in hyperacetylation of H3 K56 within silent loci and telomeric silencing defects, despite the continued presence of Sir2p throughout these loci. These silencing defects in hst3Δ hst4Δ mutants could be suppressed by deletion of RTT109. In contrast, overexpression of Sir2p could not restore silencing in hst3Δ hst4Δ mutants. Together, our findings argue that HST3 HST4 play critical roles in maintaining the hypoacetylated state of K56 on histone H3 within silent chromatin.  相似文献   

15.
In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793–809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.  相似文献   

16.
The coordinated process of DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3-H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3-H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.  相似文献   

17.
18.
Acetylation of histone H3 on lysine 56 occurs during mitotic and meiotic S phase in fungal species. This acetylation blocks a direct electrostatic interaction between histone H3 and nucleosomal DNA, and the absence of this modification is associated with extreme sensitivity to genotoxic agents. We show here that H3-K56 acetylation is catalyzed when Rtt109, a protein that lacks significant homology to known acetyltransferases, forms an active complex with either of two histone binding proteins, Asf1 or Vps75. Rtt109 binds to both these cofactors, but not to histones alone, forming enzyme complexes with kinetic parameters similar to those of known histone acetyltransferase (HAT) enzymes. Therefore, H3-K56 acetylation is catalyzed by a previously unknown mechanism that requires a complex of two proteins: Rtt109 and a histone chaperone. Additionally, these complexes are functionally distinct, with the Rtt109/Asf1 complex, but not the Rtt109/Vps75 complex, being critical for resistance to genotoxic agents.  相似文献   

19.
Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.  相似文献   

20.
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号