首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DNA at stretching forces below 0.6 pN, effects that can be reversed with 2.7-pN force or in 200 mM monovalent salt concentrations. Consecutive tens-of-nanometer bending events suggest that H1 binds to naked DNA in buffer at high stoichiometries. In egg extracts, single DNA molecules assemble into nucleosomes and undergo rapid compaction. Histone H1 at endogenous physiological concentrations increases the DNA compaction rate during chromatin assembly under 2-pN force and decreases it during disassembly under 5-pN force. In egg cytoplasm, histone H1 protects sperm nuclei undergoing genome-wide decondensation and chromatin assembly from becoming abnormally stretched or fragmented due to astral microtubule pulling forces. These results reveal functional ramifications of H1 binding to DNA at the single-molecule level and suggest an important physiological role for H1 in compacting DNA under force and during chromatin assembly.  相似文献   

3.
Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.  相似文献   

4.
5.
6.
7.
8.

Background

Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex) in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.

Results

To identify the factor(s) that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.

Conclusions

These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.  相似文献   

9.
Raut VV  Pandey SM  Sainis JK 《Annals of botany》2011,108(7):1235-1246

Background and Scope

In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from bioinformatics studies and analysis of mutants, the biochemical existence of such complexes has remained unexplored.

Methods

Histone H1-depleted donor chromatin was prepared by micrococcal nuclease digestion of wheat nuclei and fractionation by exclusion chromatography. Nuclear extract was partially purified by cellulose phosphate ion exchange chromatography. Histone octamer trans-transfer activity was analysed using the synthetic nucleosome positioning sequence in the absence and presence of ATP and its analogues. ATPase activity was measured as 32Pi released using liquid scintillation counting.

Key Results

ATP-dependent histone octamer trans-transfer activity, partially purified from wheat nuclei using cellulose phosphate, showed ATP-dependent octamer displacement in trans from the H1-depleted native donor chromatin of wheat to the labelled synthetic nucleosome positioning sequence. It also showed nucleosome-dependent ATPase activity. Substitution of ATP by ATP analogues, namely ATPγS, AMP-PNP and ADP abolished the octamer trans-transfer, indicating the requirement of ATP hydrolysis for this activity.

Conclusions

ATP-dependent histone octamer transfer in trans is a recognized activity of chromatin remodelling complexes required for chromatin structure dynamics in non-plant species. Our results suggested that wheat nuclei also possess a typical chromatin remodelling activity, similar to that in other eukaryotes. This is the first report on chromatin remodelling activity in vitro from plants.  相似文献   

10.
11.
12.
Studies on histone phosphorylation during transitions in chromatin structure occurringin vivoduring spermatogenesis and early embryogenesis in sea urchins are reviewed and evaluated in the light of recent studies on histone phosphorylation occurring during chromatin synthesis in frog egg extractsin vitroand evidence that protein kinases and phosphatases play direct roles in the regulation of cellular structure. Sperm-specific histone variants Sp H1 and Sp H2B are maintained as phosphorylated derivatives N and O/P throughout spermatogenesis and early embryogenesis and egg specific histone variants CS H1 and CS H2A are phosphorylated during early embryogenesis. These developmental correlations provide clues about the roles of histone phosphorylation in control of chromatin structurein vivoand provide a basis for the interpretation of data obtained from in-vitro sperm chromatin remodeling in egg extracts and from biochemical studies on the effects of histone phosphorylation on DNA binding. The potential consequences for chromatin structure of the various histone phosphorylation events observed in sea urchins and frog egg extracts are discussed.  相似文献   

13.
14.
15.
Li J  Li Z  Ruan J  Xu C  Tong Y  Pan PW  Tempel W  Crombet L  Min J  Zang J 《PloS one》2011,6(10):e25104

Background

M-phase phosphoprotein 8 (MPP8) was initially identified to be a component of the RanBPM-containing large protein complex, and has recently been shown to bind to methylated H3K9 both in vivo and in vitro. MPP8 binding to methylated H3K9 is suggested to recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the promoter of the E-cadherin gene, mediating the E-cadherin gene silencing and promote tumor cell motility and invasion. MPP8 contains a chromodomain in its N-terminus, which is used to bind the methylated H3K9.

Methodology/Principal Findings

Here, we reported the crystal structures of human MPP8 chromodomain alone and in complex with the trimethylated histone H3K9 peptide (residue 1–15). The complex structure unveils that the human MPP8 chromodomain binds methylated H3K9 through a conserved recognition mechanism, which was also observed in Drosophila HP1, a chromodomain containing protein that binds to methylated H3K9 as well. The structure also reveals that the human MPP8 chromodomain forms homodimer, which is mediated via an unexpected domain swapping interaction through two β strands from the two protomer subunits.

Conclusions/Significance

Our findings reveal the molecular mechanism of selective binding of human MPP8 chromodomain to methylated histone H3K9. The observation of human MPP8 chromodomain in both solution and crystal lattice may provide clues to study MPP8-mediated gene regulation furthermore.  相似文献   

16.
17.
The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit. Here, we show that RanBP1 downregulation takes place in mid to late telophase, concomitant with the reformation of nuclei. Mild RanBP1 overexpression in murine cells causes RanBP1 to persist in late mitosis and hinders a set of events underlying the telophase to interphase transition, including chromatin decondensation, nuclear expansion and nuclear lamina reorganisation. Moreover, the reorganisation of nuclear pores fails associated with defective nuclear relocalisation of NLS cargoes. Co-expression of importin beta, together with RanBP1, however mitigates these defects. Thus, RanBP1 downregulation is required for nuclear reorganisation pathways operated by importin beta after mitosis.  相似文献   

18.
In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-32P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100–200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4–7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin structure, histone-chromatin binding strength, and concentration of DM.  相似文献   

19.

Background

HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been defined for the Cbx3 chromodomain.

Methodology/Principal Findings

Here, we found that the Cbx3 chromodomain can bind to H1K26me2 and G9aK185me3 with comparable binding affinities compared to H3K9me3. We also determined the crystal structures of the human Cbx3 chromodomain in complex with dimethylated histone H1K26 and trimethylated G9aK185 peptides, respectively. The complex structures unveil that the Cbx3 chromodomain specifically bind methylated histone H1K26 and G9aK185 through a conserved mechanism.

Conclusions/Significance

The Cbx3 chromodomain binds with comparable affinities to all of the methylated H3K9, H1K26 and G9aK185 peptides. It is suggested that Cbx3 may regulate gene expression via recognizing both histones and non-histone proteins.  相似文献   

20.

Background

Methylation of residues in histone tails is part of a network that regulates gene expression. JmjC domain containing proteins catalyze the oxidative removal of methyl groups on histone lysine residues. Here, we report studies to test the involvement of Jumonji domain-containing protein 6 (Jmjd6) in histone lysine demethylation. Jmjd6 has recently been shown to hydroxylate RNA splicing factors and is known to be essential for the differentiation of multiple tissues and cells during embryogenesis. However, there have been conflicting reports as to whether Jmjd6 is a histone-modifying enzyme.

Methodology/Principal Findings

Immunolocalization studies reveal that Jmjd6 is distributed throughout the nucleoplasm outside of regions containing heterochromatic DNA, with occasional localization in nucleoli. During mitosis, Jmjd6 is excluded from the nucleus and reappears in the telophase of the cell cycle. Western blot analyses confirmed that Jmjd6 forms homo-multimers of different molecular weights in the nucleus and cytoplasm. A comparison of mono-, di-, and tri-methylation states of H3K4, H3K9, H3K27, H3K36, and H4K20 histone residues in wildtype and Jmjd6-knockout cells indicate that Jmjd6 is not involved in the demethylation of these histone lysine residues. This is further supported by overexpression of enzymatically active and inactive forms of Jmjd6 and subsequent analysis of histone methylation patterns by immunocytochemistry and western blot analysis. Finally, treatment of cells with RNase A and DNase I indicate that Jmjd6 may preferentially associate with RNA/RNA complexes and less likely with chromatin.

Conclusions/Significance

Taken together, our results provide further evidence that Jmjd6 is unlikely to be involved in histone lysine demethylation. We confirmed that Jmjd6 forms multimers and showed that nuclear localization of the protein involves association with a nucleic acid matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号