首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Ca2+ and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca2+. The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca2+ modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca2+ and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca2+ uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca2+ accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H2O2 generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca2+ channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca2+ signaling provides evidence consistent with genetic studies of the relationship between Ca2+ signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca2+ uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition to its role (also linked to NO signaling) in pathogen defense responses and that this NO generation acts as a negative regulator during plant leaf senescence signaling.Senescence can be considered as the final stage of a plant’s development. During this process, nutrients will be reallocated from older to younger parts of the plant, such as developing leaves and seeds. Leaf senescence has been characterized as a type of programmed cell death (PCD; Gan and Amasino, 1997; Quirino et al., 2000; Lim et al., 2003). During senescence, organelles such as chloroplasts will break down first. Biochemical changes will also occur in the peroxisome during this process. When the chloroplast disassembles, it is easily observed as a loss of chlorophyll. Mitochondria, the source of energy for cells, will be the last cell organelles to undergo changes during the senescence process (Quirino et al., 2000). At the same time, other catabolic events (e.g. protein and lipid breakdown, etc.) are occurring (Quirino et al., 2000). Hormones may also contribute to this process (Gepstein, 2004). From this information we can infer that leaf senescence is regulated by many signals.Darkness treatment can induce senescence in detached leaves (Poovaiah and Leopold, 1973; Chou and Kao, 1992; Weaver and Amasino, 2001; Chrost et al., 2004; Guo and Crawford, 2005; Ülker et al., 2007). Ca2+ can delay the senescence of detached leaves (Poovaiah and Leopold, 1973) and leaf senescence induced by methyl jasmonate (Chou and Kao, 1992); the molecular events that mediate this effect of Ca2+ are not well characterized at present.Nitric oxide (NO) is a critical signaling molecule involved in many plant physiological processes. Recently, published evidence supports NO acting as a negative regulator during leaf senescence (Guo and Crawford, 2005; Mishina et al., 2007). Abolishing NO generation in either loss-of-function mutants (Guo and Crawford, 2005) or transgenic Arabidopsis (Arabidopsis thaliana) plants expressing NO degrading dioxygenase (NOD; Mishina et al., 2007) leads to an early senescence phenotype in these plants compared to the wild type. Corpas et al. (2004) showed that endogenous NO is mainly accumulated in vascular tissues of pea (Pisum sativum) leaves. This accumulation is significantly reduced in senescing leaves (Corpas et al., 2004). Corpas et al. (2004) also provided evidence that NO synthase (NOS)-like activity (i.e. generation of NO from l-Arg) is greatly reduced in senescing leaves. Plant NOS activity is regulated by Ca2+/calmodulin (CaM; Delledonne et al., 1998; Corpas et al., 2004, 2009; del Río et al., 2004; Valderrama et al., 2007; Ma et al., 2008). These studies suggest a link between Ca2+ and NO that could be operating during senescence.In animal cells, all three NOS isoforms require Ca2+/CaM as a cofactor (Nathan and Xie, 1994; Stuehr, 1999; Alderton et al., 2001). Notably, animal NOS contains a CaM binding domain (Stuehr, 1999). It is unclear whether Ca2+/CaM can directly modulate plant NOS or if Ca2+/CaM impacts plant leaf development/senescence through (either direct or indirect) effects on NO generation. However, recent studies from our lab suggest that Ca2+/CaM acts as an activator of NOS activity in plant innate immune response signaling (Ali et al., 2007; Ma et al., 2008).Although Arabidopsis NO ASSOCIATED PROTEIN1 (AtNOA1; formerly named AtNOS1) was thought to encode a NOS enzyme, no NOS-encoding gene has yet been identified in plants (Guo et al., 2003; Crawford et al., 2006; Zemojtel et al., 2006). However, the AtNOA1 loss-of-function mutant does display reduced levels of NO generation, and several groups have used the NO donor sodium nitroprusside (SNP) to reverse some low-NO related phenotypes in Atnoa1 plants (Guo et al., 2003; Bright et al., 2006; Zhao et al., 2007). Importantly, plant endogenous NO deficiency (Guo and Crawford, 2005; Mishina et al., 2007) or abscisic acid/methyl jasmonate (Hung and Kao, 2003, 2004) induced early senescence can be successfully rescued by application of exogenous NO. Addition of NO donor can delay GA-elicited PCD in barley (Hordeum vulgare) aleurone layers as well (Beligni et al., 2002).It has been suggested that salicylic acid (SA), a critical pathogen defense metabolite, can be increased in natural (Morris et al., 2000; Mishina et al., 2007) and transgenic NOD-induced senescent Arabidopsis leaves (Mishina et al., 2007). Pathogenesis related gene1 (PR1) expression is up-regulated in transgenic Arabidopsis expressing NOD (Mishina et al., 2007) and in leaves of an early senescence mutant (Ülker et al., 2007).Plant cyclic nucleotide gated channels (CNGCs) have been proposed as candidates to conduct extracellular Ca2+ into the cytosol (Sunkar et al., 2000; Talke et al., 2003; Lemtiri-Chlieh and Berkowitz, 2004; Ali et al., 2007; Demidchik and Maathuis, 2007; Frietsch et al., 2007; Kaplan et al., 2007; Ma and Berkowitz, 2007; Urquhart et al., 2007; Ma et al., 2009a, 2009b). Arabidopsis “defense, no death” (dnd1) mutant plants have a null mutation in the gene encoding the plasma membrane-localized Ca2+-conducting CNGC2 channel. This mutant also displays no hypersensitive response to infection by some pathogens (Clough et al., 2000; Ali et al., 2007). In addition to involvement in pathogen-mediated Ca2+ signaling, CNGC2 has been suggested to participate in the process of leaf development/senescence (Köhler et al., 2001). dnd1 mutant plants have high levels of SA and expression of PR1 (Yu et al., 1998), and spontaneous necrotic lesions appear conditionally in dnd1 leaves (Clough et al., 2000; Jirage et al., 2001). Endogenous H2O2 levels in dnd1 mutants are increased from wild-type levels (Mateo et al., 2006). Reactive oxygen species molecules, such as H2O2, are critical to the PCD/senescence processes of plants (Navabpour et al., 2003; Overmyer et al., 2003; Hung and Kao, 2004; Guo and Crawford, 2005; Zimmermann et al., 2006). Here, we use the dnd1 mutant to evaluate the relationship between leaf Ca2+ uptake during plant growth and leaf senescence. Our results identify NO, as affected by leaf Ca2+ level, to be an important negative regulator of leaf senescence initiation. Ca2+-mediated NO production during leaf development could control senescence-associated gene (SAG) expression and the production of molecules (such as SA and H2O2) that act as signals during the initiation of leaf senescence programs.  相似文献   

11.
Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense.Nitric oxide (NO) is a small ubiquitous molecule derived from nitrogen-containing precursors that is one of the earliest and most widespread signaling molecules in living organisms from metazoans to mammals (Torreilles, 2001). The regulatory functions of NO have been extensively studied in mammals, where it is synthesized from Arg through the activity of NO synthases (Knowles and Moncada, 1994). By contrast, the biosynthesis and function of this molecule in plants are largely unknown. During the last 10 years, NO biosynthesis in plants has been one of the most controversial topics in plant biology (Durner and Klessig, 1999; Wendehenne et al., 2001; del Río et al., 2004; Zeier et al., 2004; Lamotte et al., 2005; Meyer et al., 2005; Modolo et al., 2005; Crawford, 2006; Crawford et al., 2006; Zemojtel et al., 2006a). Despite the controversy about its biosynthesis, it is now clear that NO regulates many physiological processes of plants, including seed germination, cell death, defense responses against pathogens, stomata function, senescence, and flowering (Beligni and Lamattina, 2000; Pedroso et al., 2000; Neill et al., 2002; Lamattina et al., 2003; He et al., 2004; Romero-Puertas et al., 2004; Wendehenne et al., 2004; Delledonne, 2005; Guo and Crawford, 2005; Simpson, 2005; Grün et al., 2006; Melotto et al., 2006; Planchet et al., 2006; Ali et al., 2007; Mishina et al., 2007).The molecular mechanisms underlying the control of seed dormancy and germination are still poorly characterized. Genetic data support a central role of abscisic acid (ABA) in regulating seed dormancy, whereas gibberellins promote germination (Finkelstein et al., 2008; Holdsworth et al., 2008). In addition, NO has been lately characterized as a new component in the signaling pathway leading to dormancy breakage. NO-releasing compounds reduce dormancy in a NO-dependent manner in Arabidopsis (Arabidopsis thaliana), some warm-season grasses, and certain barley (Hordeum vulgare) cultivars (Bethke et al., 2004; Sarath et al., 2006). More recently, the aleurone layer cells have been characterized as responsive to NO, gibberellins, and ABA, thus becoming a primary determinant of seed dormancy in Arabidopsis (Bethke et al., 2007).Two main enzyme-based pathways have been proposed to be functional for NO biosynthesis in plants. One is based on the activity of nitrate reductases (Meyer et al., 2005; Modolo et al., 2005), and another one, yet undefined, is based on the direct or indirect function of the Nitric Oxide-Associated1/Resistant to Inhibition by Fosfidomycin1 (AtNOA1/RIF1) protein. It has been also reported that NO synthesis from nitrite occurs in mitochondria associated with mitochondrial electron transport (Planchet et al., 2005) and also that this pathway is mainly functioning in roots under anoxia (Gupta et al., 2005). Moreover, the balance between mitochondrial nitrite reduction and superoxide-dependent NO degradation seems to be derived from factors controlling NO levels in Arabidopsis (Wulff et al., 2009). It has been recently reported that the synthesis of NO in floral organs requires nitrate reductase activity (Seligman et al., 2008) and also that homologues of AtNOA1 participate in NO biosynthesis in diatoms (Vardi et al., 2008), mammals (Zemojtel et al., 2006b; Parihar et al., 2008a, 2008b), and Nicotiana benthamiana (Kato et al., 2008). Recently, the identification of the rif1 mutant, carrying a null mutation in the AtNOA1 locus (At3g47450), allowed uncovering of a function for AtNOA1/RIF1 in the expression of plastome-encoded proteins (Flores-Pérez et al., 2008). Moreover, another recent report claims that AtNOA1 is not a NO synthase but a cGTPase (Moreau et al., 2008), likely playing a role in ribosome assembly and subsequent mRNA translation to proteins in the chloroplasts.To date, it is not clear if both pathways coexist in plants and, if so, the corresponding contributions of each pathway to NO biosynthesis. In this work, we have addressed the functions of both pathways in Arabidopsis by generating a triple mutant in both nitrate reductases and AtNOA1 that is severely impaired in NO production. Further characterization of NO-deficient plants allowed us to identify a functional cross talk between NO and ABA in controlling seed germination and dormancy as well as plant resistance to water deficit.  相似文献   

12.
13.
14.
15.
16.
Plants challenged with abiotic stress show enhanced polyamines levels. Here, we show that the polyamine putrescine (Put) plays an important role to alleviate Fe deficiency. The adc2-1 mutant, which is defective in Put biosynthesis, was hypersensitive to Fe deficiency compared with wild type (Col-1 of Arabidopsis [Arabidopsis thaliana]). Exogenous Put decreased the Fe bound to root cell wall, especially to hemicellulose, and increased root and shoot soluble Fe content, thus alleviating the Fe deficiency-induced chlorosis. Intriguingly, exogenous Put induced the accumulation of nitric oxide (NO) under both Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions, although the ferric-chelate reductase (FCR) activity and the expression of genes related to Fe uptake were induced only under -Fe treatment. The alleviation of Fe deficiency by Put was diminished in the hemicellulose-level decreased mutant-xth31 and in the noa1 and nia1nia2 mutants, in which the endogenous NO levels are reduced, indicating that both NO and hemicellulose are involved in Put-mediated alleviation of Fe deficiency. However, the FCR activity and the expression of genes related to Fe uptake were still up-regulated under -Fe+Put treatment compared with -Fe treatment in xth31, and Put-induced cell wall Fe remobilization was abolished in noa1 and nia1nia2, indicating that Put-regulated cell wall Fe reutilization is dependent on NO. From our results, we conclude that Put is involved in the remobilization of Fe from root cell wall hemicellulose in a process dependent on NO accumulation under Fe-deficient condition in Arabidopsis.Iron is an essential element for plant growth and development, and iron deficiency is the most common micronutrient deficiency in the world. To cope with iron deficiency, plants have evolved two distinct mechanisms for Fe acquisition from the rhizosphere. Strategy I, found in all dicots and monocots with the exception of graminaceous species, is characterized by (1) release of protons to acidify the rhizosphere, which is mediated in Arabidopsis (Arabidopsis thaliana) by the proton-translocating ATPase AHA2 (ARABIDOPSIS PLASMA MEMBRANE H+-ATPASE ISOFORM 2; Curie and Briat, 2003; Santi and Schmidt, 2009); (2) inducing ferric chelate reductase activity mediated by FRO2 (FERRIC REDUCTASE OXIDASE2; Robinson et al., 1999); and (3) uptake of Fe2+ by the metal transporter IRT1 (IRON REGULATED TRANSPORTER1; Eide et al., 1996; Vert et al., 2002). Strategy II, utilized by graminaceous monocots (Römheld and Marschner, 1986), is characterized by enhanced release of phytosiderophores that form chelates with Fe(III) (Curie and Briat, 2003). However, in addition to Fe acquisition, the mechanisms underlying the mobilization of Fe(III) also are a major challenge for us to understand.Recently, accumulating evidence has shown that phenolic compounds are important for iron mobilization. Rodríguez-Celma et al. (2013) showed that secretion of phenolics is critical for Arabidopsis Fe acquisition from low bioavailability sources, and then Fourcroy et al. (2014) and Schmidt et al. (2014) demonstrated that coumarins are the active compounds in this process. Schmid et al. (2014) confirmed that secretion of coumarins is an essential aspect of Arabidopsis Fe acquisition and provided extensive information on metabolomic changes elicited by Fe deficiency. However, under certain conditions Fe is not readily available, and Fe is difficult to mobilize; thus, Fe stored in the plant needs to be reutilized. For example, phenolics are secreted to remobilize the root apoplastic Fe and improve Fe nutrition in red clover (Trifolium pratense) and rice (Oryza sativa) (Jin et al., 2007; Bashir et al., 2011). Moreover, Lei et al. (2014) reported that the cell wall can be an important Fe source during periods of limited Fe supply. As the first barrier to encounter the soil environment, the cell wall is a pivotal site for most cationic ions in plants (Lozano-Rodríguez et al., 1997; Carrier et al., 2003). Hemicellulose contributes to the overall Al/Cd accumulation in the cell wall of Arabidopsis (Zhu et al., 2012, 2013) and also acts as a Fe pool (Lei et al., 2014). Over 75% of Fe in the root is retained in the cell wall (Bienfait et al., 1985), especially in the hemicellulose fraction (Lei et al., 2014). Thus, the cell wall is not only a site to immobilize an element and restrict its entrance into the cell, but also can serve as a pool to provide the nutrient when the supply from the growth medium is limited. However, the upstream mechanism of Fe reutilization through the cell wall, especially hemicellulose, is still far from clear.The responses to Fe deficiency in plants involve numerous phytohormones and signaling molecules, including auxin (Römheld and Marschner, 1981; Chen et al., 2010), ethylene (García et al., 2010; Wu et al., 2011), and NO (Graziano and Lamattina, 2007; Chen et al., 2010). Polyamines share common substrates with nitric oxide (NO) (Shi and Chan, 2014), and polyamines like spermidine and spermine rapidly induce a burst of NO in various plant species, indicating that NO is a potential intermediate of polyamine-mediated signaling.Polyamines, including putrescine (Put), spermidine, and spermine, are low Mr natural compounds with nitrogen-containing aliphatic structure and influence basic physiological and developmental events, such as cell division and differentiation, rhizogenesis, leaf senescence, zygotic, somatic embryogenesis, and development of flowers and fruits (Feirer et al., 1984; Galston et al., 1995; Bouchereau et al., 1999; Kakkar et al., 2000; Tun et al., 2001; Shi and Chan, 2014). The metabolism of polyamines in plant tissues is subject to strict regulation, and polyamine levels in plant roots change upon exposure to abiotic stress such as salt, drought, low and high temperature, heavy metals (Cu, Cr, Fe, and Ni), and oxidative stresses (Liu et al., 2005; Cheng et al., 2009; Wimalasekera et al., 2011; Tavladoraki et al., 2012).Ample evidence demonstrates the involvement of Put in responses to various types of abiotic stress, such as mineral deficiency in barley (Hordeum vulgare) leaves (Smith, 1973), high osmotic pressure in barley, corn, wheat, and wild oat leaves (Flores and Galston, 1982a), low pH in peeled oat (Avena sativa L. var Victory) leaf (Young and Galston, 1983), potassium deficiency in oat shoot and Arabidopsis thaliana (L.) Heynh (Young and Galston, 1984; Watson and Malmberg, 1996), and cadmium toxicity in oat and bean leaves (Weinstein et al., 1986). In animals, Put is produced either from Orn by Orn decarboxylase or from Arg by Arg decarboxylase (ADC) (Hanfrey et al., 2001). As there is no detectable Orn decarboxylase activity in Arabidopsis, the ADC route is critical for Put biosynthesis. Although there are two genes responsible for ADC activity, Urano et al. (2004) reported that the expression of ADC2 correlates well with the increment of free Put, indicating ADC2 plays an important role in Put biosynthesis in Arabidopsis. However, the role of Put under Fe deficiency in plants remains unknown.In this study, we found that Fe deficiency results in enhanced Put levels. Further, whereas exogenous Put alleviated Fe deficiency, the adc2-1 mutant, in which endogenous Put is decreased, exhibited a Fe deficiency-sensitive phenotype. We demonstrated that Put acts upstream of NO to decrease the Fe binding capacity of the cell wall, especially that of hemicellulose, thus resulting in greater Fe reutilization.  相似文献   

17.
18.
19.
20.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号