首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current models of metabolic compartmentation and engineering.Starch is the most important carbohydrate used for food and feed purposes and represents the major resource for our diet (Smith, 2008). The total yield of starch in rice (Oryza sativa), corn (Zea mays), wheat (Triticum aestivum), and potato (Solanum tuberosum) exceeds 109 tons per year (Kossmann and Lloyd, 2000; Slattery et al., 2000). In addition to its use in a nonprocessed form, extracted starch is processed in many different ways, for instance as a high-Fru syrup, as a food additive, or for various technical purposes. As a result of this considerable importance, increasing the starch content of plant tissues has been a major goal for many years, with both classical breeding and biotechnological approaches being taken extensively over the last few decades (Martin and Smith, 1995; Regierer et al., 2002).The pathway by which carbon is converted from Suc to starch in the potato tuber is well established (Kruger, 1997; Fernie et al., 2002; Geigenberger et al., 2004; Geigenberger, 2011). Imported Suc is cleaved in the cytosol by Suc synthase, resulting in the formation of UDP-Glc and Fru; the UDP-Glc is subsequently converted to Glc-1-P by UDP-Glc pyrophosphorylase. The second product of the Suc synthase reaction, Fru, is efficiently phosphorylated to Fru-6-P by fructokinase (Renz et al., 1993; Davies et al., 2005). Fru-6-P is freely converted to Glc-6-P, in which form it normally enters the amyloplast (Kammerer et al., 1998; Tauberger et al., 2000; Zhang et al., 2008), and once in the plastid, it is converted to starch via the concerted action of plastidial phosphoglucomutase, ADP-Glc pyrophosphorylase (AGPase), and the various isoforms of starch synthase (Martin and Smith, 1995; Geigenberger, 2011). Of these reactions, although some of the control of starch synthesis resides in the plastidial phosphoglucomutase reaction (Fernie et al., 2001b), the AGPase reaction harbors the highest proportion of control within the linear pathway (Sweetlove et al., 1999; Geigenberger et al., 1999, 2004). In addition, considerable control resides in both the Glc-6-P phosphate antiporter (Zhang et al., 2008) and the amyloplastidial adenylate transporter (Tjaden et al., 1998; Zhang et al., 2008) as well as in reactions external to the pathways, such as the amyloplastidial adenylate kinase (Regierer et al., 2002), cytosolic UMP synthase (Geigenberger et al., 2005), and mitochondrial NAD-malic enzyme (Jenner et al., 2001).As part of our ongoing study of the constituent enzymes of the tricarboxylic acid (TCA) cycle, we made an initially surprising observation that increasing or decreasing the content of malate via a fruit-specific expression of antisense constructs targeted against the mitochondrial malate dehydrogenase or fumarase, respectively, resulted in opposing changes in the levels of starch (Centeno et al., 2011). We were able to demonstrate that these plants were characterized by an altered cellular redox balance and that this led to changes in the activation state of the AGPase reaction. Given that starch only accumulates transiently in tomato (Solanum lycopersicum; Beckles et al., 2001) as a consequence of this activation, the fruits were characterized by altered sugar content at ripening, a fact that dramatically altered their postharvest characteristics (Centeno et al., 2011). Here, we chose to express the antisense fumarase construct in potato in order to ascertain the effect of the manipulation in an organ that linearly accumulates starch across its development. The results obtained are compared and contrasted with those of the tomato fruit and within the context of current models of subcellular redox regulation.  相似文献   

4.
5.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

6.
The major component of starch is the branched glucan amylopectin, the branching pattern of which is one of the key factors determining its ability to form semicrystalline starch granules. Here, we investigated the functions of different branching enzyme (BE) types by expressing proteins from maize (Zea mays BE2a), potato (Solanum tuberosum BE1), and Escherichia coli (glycogen BE [EcGLGB]) in Arabidopsis (Arabidopsis thaliana) mutant plants that are deficient in their endogenous BEs and therefore, cannot make starch. The expression of each of these three BE types restored starch biosynthesis to differing degrees. Full complementation was achieved using the class II BE ZmBE2a, which is most similar to the two endogenous Arabidopsis isoforms. Expression of the class I BE from potato, StBE1, resulted in partial complementation and high amylose starch. Expression of the glycogen BE EcGLGB restored only minimal amounts of starch production, which had unusual chain length distribution, branch point distribution, and granule morphology. Nevertheless, each type of BE together with the starch synthases and debranching enyzmes were able to create crystallization-competent amylopectin polymers. These data add to the knowledge of how the properties of the BE influence the final composition of starch and fine structure of amylopectin.Starch is composed of two glucan polymers: amylopectin and amylose. Amylopectin constitutes around 80% of the mass of most starches and is a large, branched polymer with a tree-like architecture. The positioning and frequency of branch points together with the distribution of chain lengths are thought to be critical factors allowing amylopectin to adopt a semicrystalline state. Within amylopectin molecules, clusters of unbranched chain segments align, and adjacent chains form double helices. These pack into crystalline lamellae that alternate with amorphous regions containing the branch points. Longer chain segments span from one cluster to the next (Zeeman et al., 2010).Amylopectin is synthesized by three enzyme activities. First, starch synthases (SSs) transfer the glucosyl part of ADP-Glc to the nonreducing end of existing glucan chains, forming new α-1,4 glucosidic bonds. Second, branching enzymes (BEs) cleave part of an α-1,4-linked chain and through an inter- or intramolecular transfer reaction, reattach it, creating α-1,6-branch points. This reaction creates additional nonreducing ends on which SSs can act. Third, debranching enzymes (DBEs) hydrolyze some of these branches, tailoring the structure of the polymer to promote its crystallization.Several SS and BE isoforms are involved in starch synthesis in plants. There are five conserved classes of SSs (granule-bound starch synthase [GBSS] and SS1–SS4) and two conserved classes of BEs (classes I and II; also referred to as classes B and A, respectively; Nougué et al., 2014). In addition, plants contain two classes of DBEs: isoamylases (ISAs) and limit dextrinases (LDAs; also called pullulanases). One ISA, a multimeric enzyme composed of either a mixture of ISA1 and ISA2 subunits or just ISA1 subunits, is primarily involved in amylopectin synthesis (James et al., 1995; Mouille et al., 1996; Nakamura et al., 1996; Delatte et al., 2005). The other DBEs (i.e. ISA3 and LDA) are primarily involved in starch degradation (Wattebled et al., 2005; Delatte et al., 2006).Based on the in vitro analysis of purified or recombinant proteins and the phenotypes of mutant plants, the different SS isoforms are proposed to have distinct, albeit overlapping, functions. SS1 is thought to preferentially elongate short chains produced by the branching reactions to between 8 and 12 Glc units (Delvallé et al., 2005; Fujita et al., 2006). SS2 is proposed to elongate such chains farther to about 20 Glc units, optimal for cluster formation (Edwards et al., 1999; Umemoto et al., 2002; Zhang et al., 2008). The precise role of SS3 is less clear, although it has been proposed to generate long, cluster-spanning chains (Fujita et al., 2007). SS4 has a distinct role in initiating and/or coordinating granule formation (Roldán et al., 2007; Crumpton-Taylor et al., 2013).The two different BE classes are also proposed to have distinct functions in amylopectin synthesis. In vitro analyses of maize (Zea mays), rice (Oryza sativa), and potato (Solanum tuberosum) enzymes suggest that the class I enzymes preferentially act on amylose and transfer longer chains, whereas class II enzymes preferentially act on branched substrates, such as amylopectin, and transfer shorter chains (Guan and Preiss, 1993; Rydberg et al., 2001; Nakamura et al., 2010). This knowledge derives largely from experiments where linear or branched substrates were provided to recombinant or purified enzymes and the increased degree of branching was monitored. Similar conclusions were gained by recombinant protein expression in Escherichia coli and yeast (Saccharomyces cerevisiae) strains deficient in their endogenous glycogen BEs (Guan et al., 1995; Seo et al., 2002), where chain elongation by glycogen synthases occurred concurrently with branching.Models have been proposed in which both BE classes help create the final cluster structure of amylopectin: class I BEs initiate branching by transferring long or branched chains, which are subsequently acted on by class II BEs to create more numerous shorter chains. These shorter chains are then elaborated by the SSs to create the clusters (Nakamura et al., 2010). After the branching reactions, a degree of debranching occurs, which is thought to control branch number and positioning and thereby, facilitate amylopectin crystallization (Myers et al., 2000; Zeeman et al., 2010). Several studies have shown that isa1-deficient mutants produce starch with an altered amylopectin, accumulate a related soluble polymer (phytoglycogen), or both (James et al., 1995; Mouille et al., 1996; Nakamura et al., 1996; Delatte et al., 2005).Despite the wide conservation of the two BE classes, major alterations in starch properties are only observed when genes encoding class II enzymes are mutated or repressed. Loss of class I BE activity in maize endosperm, rice endosperm, or potato tuber did not alter starch content and caused only minor differences in amylopectin structure (e.g. the distribution of chain lengths and branch points) and/or starch properties (e.g. gelatinization or digestibility; Safford et al., 1998; Blauth et al., 2002; Satoh et al., 2003; Xia et al., 2011). In contrast, loss of class II BE results in significant changes, such as decreased starch content and a high apparent amylose content. This has been observed in several species, including maize (Stinard et al., 1993), potato (Jobling et al., 1999), pea (Pisum sativum; Bhattacharyya et al., 1990), rice (Mizuno et al., 1993), barley (Hordeum vulgare; Regina et al., 2010), and wheat (Triticum aestivum; Regina et al., 2006). The high apparent amylose content was caused at least in part by the accumulation of less-frequently branched amylopectin that stains with a higher wavelength of maximal absorption (λmax) than that of the wild type (Boyer et al., 1976). In potato, this phenotype was enhanced by the simultaneous suppression of BE1 (Schwall et al., 2000), a result also shown recently in barley (Carciofi et al., 2012).Arabidopsis (Arabidopsis thaliana) has three genes annotated as BEs, At3g20440 (BE1), At5g03650 (BE2), and At2g36390 (BE3), but it seems that only BE2 and BE3 are active. Both BE2 and BE3 are class II BEs, making Arabidopsis somewhat unusual in not possessing a class I BE. The gene annotated as BE1 encodes a related protein that falls into a separate clade to either class I or II BEs (Dumez et al., 2006; Han et al., 2007; Wang et al., 2010). It was initially suggested that plants with mutations in this gene had a wild-type phenotype (Dumez et al., 2006), but subsequent work indicated that homozygous be1 mutation causes embryo lethality (hence, its alternative name EMBRYO DEFECTIVE2729; Wang et al., 2010). Thus, the function of the protein encoded at At3g20440 is currently unknown but unlikely to be a functional BE.The be2 and be3 single mutants have phenotypes that closely resemble the wild type, indicating that there is a high degree of redundancy between the enzymes. However, be2be3 double mutants lack starch (Dumez et al., 2006). Instead, the plants accumulate large amounts of maltose and other linear malto-oligosaccharides (MOSs). This is presumably because linear chains produced by the SSs are cleaved by starch-degrading enzymes (α- and β-amylases; Dumez et al., 2006). The altered metabolism of these double-mutant plants impedes growth, and they are smaller and paler than the wild type. The precise reason for this is unclear.In addition to mutagenesis, there have been several studies where BEs were overexpressed in transgenic plants. Overexpression of the E. coli glycogen BE (EcGLGB) in potato tubers or rice endosperm resulted in an increased degree of branching of amylopectin (Shewmaker et al., 1994; Kortstee et al., 1996; Kim et al., 2005). Overexpression of endogenous plant BE2 genes has also been performed in both rice and potato, increasing the proportion of shorter amylopectin chains (Tanaka et al., 2004; Brummell et al., 2015), and rice, leading to the accumulation of highly branched, water-soluble polysaccharides (Tanaka et al., 2004). Transgenic expression of genes from different photosynthetic organisms has also shown the degree of functional conservation within the plant BE classes. Sawada et al. (2009) showed that class II BE from Chlorella kessleri could rescue the BE2b-deficient phenotype in rice endosperm.The aim of this work was to investigate the capacity of different types of BEs to mediate starch granule formation by assessing their ability to function in the context of an otherwise intact starch biosynthesis pathway. To do this, we used the Arabidopsis be2be3 double mutants as a line in which to express three types of BEs. We chose BE2a from maize (required for leaf starch synthesis and similar to the endogenous Arabidopsis proteins; Yandeau-Nelson et al., 2011), BE1 from potato (represents the plant class I BEs that Arabidopsis lacks; Safford et al., 1998), and GLGB (the BE from E. coli involved in glycogen biosynthesis). This approach differs from previous investigations, because the activity of each BE type (working in planta with the same set of SSs and DBEs) can be assessed, and the results can be directly compared. In addition, we sought to address whether a glycogen BE was sufficient for starch production—in other words, whether the remaining starch biosynthetic enzymes are capable of generating a crystallization competent polymer, even when partnered with a BE with a different specificity. In previously described transgenic plants expressing E. coli GLGB, the endogenous plant BEs were still present (Shewmaker et al., 1994; Kortstee et al., 1996; Kim et al., 2005).In the transgenic lines generated here, we analyzed glucan synthesis, starch structure, and composition. Our results show that all three BE types can mediate starch granule production but to differing degrees. In each case, the structure of amylopectin and the amylose content depend on the type of BE present, as does starch granule morphology. We discuss the reasons for these differences in relation to previously reported BE properties.  相似文献   

7.
8.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

9.
10.
Previous studies showed that efforts to further elevate starch synthesis in rice (Oryza sativa) seeds overproducing ADP-glucose (ADPglc) were prevented by processes downstream of ADPglc synthesis. Here, we identified the major ADPglc transporter by studying the shrunken3 locus of the EM1093 rice line, which harbors a mutation in the BRITTLE1 (BT1) adenylate transporter (OsBt1) gene. Despite containing elevated ADPglc levels (approximately 10-fold) compared with the wild-type, EM1093 grains are small and shriveled due to the reduction in the amounts and size of starch granules. Increases in ADPglc levels in EM1093 were due to their poor uptake of ADP-[14C]glc by amyloplasts. To assess the potential role of BT1 as a rate-determining step in starch biosynthesis, the maize ZmBt1 gene was overexpressed in the wild-type and the GlgC (CS8) transgenic line expressing a bacterial glgC-TM gene. ADPglc transport assays indicated that transgenic lines expressing ZmBT1 alone or combined with GlgC exhibited higher rates of transport (approximately 2-fold), with the GlgC (CS8) and GlgC/ZmBT1 (CS8/AT5) lines showing elevated ADPglc levels in amyloplasts. These increases, however, did not lead to further enhancement in seed weights even when these plant lines were grown under elevated CO2. Overall, our results indicate that rice lines with enhanced ADPglc synthesis and import into amyloplasts reveal additional barriers within the stroma that restrict maximum carbon flow into starch.Cereal grains contribute a significant portion of worldwide starch production. Unlike other plant tissue, starch biosynthesis in the endosperm storage organ of cereal grains is unique in its dependence on two ADP-Glc pyrophosphorylase (AGPase) isoforms (Denyer et al., 1996; Thorbjørnsen et al., 1996; Sikka et al., 2001), a major cytosolic enzyme and a minor plastidial one, to generate ADP-glucose (ADPglc), the sugar nucleotide utilized by starch synthases in the amyloplast (Cakir et al., 2015). The majority of ADPglc in cereal endosperm is generated in the cytosol from AGPase (Tuncel and Okita, 2013) as well as by Suc synthase (Tuncel and Okita, 2013; Bahaji et al., 2014) and subsequently transported into amyloplasts by the BRITTLE-1 (BT1) protein located at the plastid envelope (Cao et al., 1995; Shannon et al., 1998).The Bt1 gene, first identified in maize (Zea mays; Mangelsdorf, 1926) and isolated by Sullivan et al. (1991), encodes a major amyloplast membrane protein ranging from 39 to 44 kD (Cao et al., 1995). The BT1 protein and its homologs belong to the mitochondrial carrier family (Sullivan et al., 1991; Haferkamp, 2007), which has a diverse range of substrates (Patron et al., 2004; Leroch et al., 2005; Kirchberger et al., 2008). The assignment of BT1 protein as the ADPglc transporter in cereal endosperms was first proposed by Sullivan et al. (1991), and then it was characterized based on the increased ADPglc levels and reduced ADPglc import rate in endosperms of BT1-deficient maize and barley (Hordeum vulgare) mutants (Tobias et al., 1992; Shannon et al., 1996, 1998; Patron et al., 2004). Biochemical transport studies of the maize BT1 showed that it imported ADPglc by counter exchanging with ADP (Kirchberger et al., 2007). The wheat (Triticum aestivum) BT1 homolog also transports ADPglc but has similar affinities for ADP and AMP as the counter-exchange substrate (Bowsher et al., 2007).Evidence from previous studies by our laboratory (Sakulsingharoj et al., 2004; Nagai et al., 2009) suggested the potential role of BT1 as well as other downstream processes as a rate-limiting step in starch biosynthesis in the transgenic rice (Oryza sativa) GlgC (CS8) lines overexpressing an up-regulated AGPase (Escherichia coli glgC-TM). In GlgC (CS8) rice lines, grain weights (starch) are elevated up to 15% compared with wild-type plants, indicating that the AGPase-catalyzed reaction is a rate-limiting step in starch biosynthesis under normal conditions. When transgenic GlgC (CS8) plants were grown under elevated CO2 levels, no further increases in grain weight were evident compared with those grown at ambient CO2. As Suc levels are elevated in leaf blades, leaf sheaths, culms (Rowland-Bamford et al., 1990), and peduncle exudates (Chen et al., 1994) in rice plants grown under elevated CO2, developing GlgC (CS8) grains were unable to convert the increased levels of sugars into starch. This lack of increase indicated that the AGPase-catalyzed reaction (ADPglc synthesis) was no longer rate limiting and that one or more downstream processes regulated carbon flux from source tissues in developing GlgC (CS8) endosperm (Sakulsingharoj et al., 2004). This view is also supported by a subsequent metabolite study in which several GlgC (CS8) lines were found to contain up to 46% higher ADPglc levels than wild-type plants (Nagai et al., 2009). As this increase in ADPglc levels was nearly 3-fold higher than the increase in grain weight, starch biosynthesis is saturated with respect to ADPglc levels and carbon flow into starch is restricted by one or more downstream steps. Potential events that may limit the utilization of ADPglc in starch in GlgC (CS8) lines are the import of this sugar nucleotide via the BT1 transporter into amyloplasts and/or the utilization of ADPglc by starch synthases. Mutant analysis of the two major starch synthases indicated no significant impact on grain weight when one of these starch synthases was nonfunctional, suggesting that this enzyme activity, contributed by multiple enzyme isoforms, is present at excessive levels (Fujita et al., 2006, 2007). Therefore, we suspected that BT1 is the likely candidate limiting carbon flow into starch in GlgC (CS8) endosperms.The aim of this study was to investigate the role of BT1 in mediating the transport of ADPglc into amyloplast and to determine whether this transport activity is rate limiting in rice endosperm. In order to address these questions, we show that BT1 is the major transporter of ADPglc by analysis of the EM1093 rice line, which contains a mutation at the shrunken3 (shr3) locus and, specifically, in the OsBt1-1 gene. Second, we assessed the impact of the expression of the maize ZmBt1 gene in wild-type and GlgC (CS8) seeds to determine the potential limiting role of BT1 transport activity on starch biosynthesis. Our results indicate that BT1 is essential for starch synthesis but is not rate limiting and that one or more stroma-localized processes limit maximum carbon flow into starch.  相似文献   

11.
Sinorhizobium meliloti cells were engineered to overexpress Anabaena variabilis flavodoxin, a protein that is involved in the response to oxidative stress. Nodule natural senescence was characterized in alfalfa (Medicago sativa) plants nodulated by the flavodoxin-overexpressing rhizobia or the corresponding control bacteria. The decline of nitrogenase activity and the nodule structural and ultrastructural alterations that are associated with nodule senescence were significantly delayed in flavodoxin-expressing nodules. Substantial changes in nodule antioxidant metabolism, involving antioxidant enzymes and ascorbate-glutathione cycle enzymes and metabolites, were detected in flavodoxin-containing nodules. Lipid peroxidation was also significantly lower in flavodoxin-expressing nodules than in control nodules. The observed amelioration of the oxidative balance suggests that the delay in nodule senescence was most likely due to a role of the protein in reactive oxygen species detoxification. Flavodoxin overexpression also led to high starch accumulation in nodules, without reduction of the nitrogen-fixing activity.Symbiotic nodules have a limited functional life that varies among different legume species. Nodule senescence is the sequence of structural, molecular, biochemical, and physiological events taking place in the process that a mature and functional nodule undergoes leading to the loss of the nitrogen-fixing activity and culminating in cell death of symbiotic tissue (Swaraj and Bishnoi, 1996; Puppo et al., 2005; Van de Velde et al., 2006).Various models have been proposed to explain the mechanisms that trigger the process of natural or stress-induced nodule senescence. However, it is generally accepted that a senescence-inducing signal from the plant causes a decrease in antioxidant levels and thus an increase in reactive oxygen species (ROS) up to a point of no return. Numerous studies have shown that ROS and antioxidant systems are involved in natural (Lucas et al., 1998; Evans et al., 1999; Hernández-Jiménez et al., 2002; Puppo et al., 2005) as well as induced (Dalton et al., 1993; Becana et al., 2000; Hernández-Jiménez et al., 2002; Matamoros et al., 2003) nodule senescence. Nitrogen fixation is very sensitive to ROS, and nitrogenase activity drastically decreases during nodule senescence (Dalton et al., 1986).Antioxidant systems that protect cells from oxidative damage have been described in symbiotic nodules (Dalton et al., 1986, 1993; Evans et al., 1999; Becana et al., 2000; Matamoros et al., 2003; Puppo et al., 2005). These include the enzymes superoxide dismutase (SOD), catalase, and peroxidase. Another enzymatic system associated with ROS detoxification is the ascorbate-glutathione pathway, which includes ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR; Dalton et al., 1986, 1992; Noctor and Foyer 1998; Becana et al., 2000). Ascorbate and reduced glutathione (GSH) in this pathway can also scavenge superoxide and hydrogen peroxide.During nodule senescence, several ultrastructural alterations in the nodule tissues and cells have been observed (Lucas et al., 1998; Hernández-Jiménez et al., 2002; Puppo et al., 2005, and refs. therein; Van de Velde et al., 2006). Cytosol becomes electron dense, altered vesicles proliferate, and eventually the cytosol undergoes lysis. The number of peroxisomes increases, mitochondria form complex elongated structures, and symbiosomes change in size and shape and fuse during natural and induced senescence of nodules (Hernández-Jiménez et al., 2002). Damage of the symbiosome membrane is also detected (Puppo et al., 2005; Van de Velde et al., 2006).A strategy of delayed nodule senescence could lead to increased nitrogen fixation and legume productivity. Delayed nodule senescence together with enhanced sustainability under field conditions are among the key aims of legume improvement programs (Puppo et al., 2005). An interesting approach proposed to achieve delayed senescence is to induce nodulation in legumes using rhizobial strains with modified redox capacity (Zahran, 2001).The protein flavodoxin contains a FMN group acting as a redox center transferring electrons at low potentials (Pueyo et al., 1991; Pueyo and Gómez-Moreno, 1991). The FMN cofactor of flavodoxin can exist in three different redox states: oxidized, one-electron-reduced semiquinone, and two-electron-reduced hydroquinone. This property confers high versatility to flavodoxins in electron transport systems (Simondsen and Tollin, 1980; McIver et al., 1998). To date, flavodoxin has not been described in plants, as flavodoxin-encoding genes were lost during the transition of algae to plants (Zurbriggen et al., 2007) and, consequently, no homologs have been identified in the sequenced genome of Arabidopsis (Arabidopsis thaliana; Arabidopsis Genome Initiative, 2000). Flavodoxin is present as a constitutive or inducible protein in different microorganisms (Klugkist et al., 1986). In the nitrogen-fixing cyanobacterium Anabaena variabilis PCC 7119, flavodoxin is expressed under conditions of limited iron availability, replacing ferredoxin in the photosynthetic electron transport from PSI to NADP+ and in nitrogenase reduction (Sandmann et al., 1990). Reversible electron transfer from flavodoxin to NADP+ is catalyzed by ferredoxin NADP+ reductase in different pathways of oxidative metabolism (Arakaki et al., 1997). In its reduced state, flavodoxin might be able to react with ROS and revert to its original redox state in the presence of an appropriate electron source. This could probably occur without the associated molecular damage that metallic complexes in catalases or SODs suffer (Keyer et al., 1995). The presence of flavodoxin has not been documented to date in the symbiotic bacterium Sinorhizobium meliloti. In Escherichia coli, however, flavodoxin induction is linked to the oxidative stress-responsive regulon soxRS (Zheng et al., 1999). It has been suggested that flavodoxin and ferredoxin (flavodoxin) NADP+ reductase might be induced and have a role in reestablishing the cell redox balance under oxidative stress conditions (Liochev et al., 1994). The properties of flavodoxin suggest that its presence in the cell may have a facilitating effect on ROS detoxification. In fact, an increase in the amount of flavodoxin has been observed in some bacterial species subjected to oxidative stress (Zheng et al., 1999; Yousef et al., 2003; Singh et al., 2004), and transgenic tobacco (Nicotiana tabacum) plants expressing flavodoxin in chloroplasts show enhanced tolerance to a broad range of stresses related to oxidative damage (Tognetti et al., 2006, 2007a, 2007b).In this work, Sinorhizobium meliloti was transformed with the A. variabilis flavodoxin gene and used to nodulate alfalfa (Medicago sativa) plants. The effects of flavodoxin expression on nodulation dynamics, on nodule development and senescence processes, and on nitrogen-fixing activity were analyzed. Mechanistic insights suggesting putative roles for flavodoxin in protection from ROS and the induced delay of nodule senescence are likewise discussed.  相似文献   

12.
13.
14.
15.
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.Rational and quantitative assessment of metabolic changes in response to genetic modification (GM) is an open question and in need of innovative solutions. Nontargeted metabolite profiling can detect thousands of compounds, but it is not easy to understand the significance of the changed metabolites in the biochemical and biological context of the organism. To better assess the changes in metabolites from nontargeted metabolomics studies, it is important to examine the changed metabolites in the context of the genome-scale metabolic network of the organism.Metabolomics is a technique that aims to quantify all the metabolites in a biological system (Nikolau and Wurtele, 2007; Nicholson and Lindon, 2008; Roessner and Bowne, 2009). It has been used widely in studies ranging from disease diagnosis (Holmes et al., 2008; DeBerardinis and Thompson, 2012) and drug discovery (Cascante et al., 2002; Kell, 2006) to metabolic reconstruction (Feist et al., 2009; Kim et al., 2012) and metabolic engineering (Keasling, 2010; Lee et al., 2011). Metabolomic studies have demonstrated the possibility of identifying gene functions from changes in the relative concentrations of metabolites (metabotypes or metabolic signatures; Ebbels et al., 2004) in various species including yeast (Saccharomyces cerevisiae; Raamsdonk et al., 2001; Allen et al., 2003), Arabidopsis (Arabidopsis thaliana; Brotman et al., 2011), tomato (Solanum lycopersicum; Schauer et al., 2006), and maize (Zea mays; Riedelsheimer et al., 2012). Metabolomics has also been used to better understand how plants interact with their environments (Field and Lake, 2011), including their responses to biotic and abiotic stresses (Dixon et al., 2006; Arbona et al., 2013), and to predict important agronomic traits (Riedelsheimer et al., 2012). Metabolite profiling has been performed on many plant species, including angiosperms such as Arabidopsis, poplar (Populus trichocarpa), and Catharanthus roseus (Sumner et al., 2003; Rischer et al., 2006), basal land plants such as Selaginella moellendorffii and Physcomitrella patens (Erxleben et al., 2012; Yobi et al., 2012), and Chlamydomonas reinhardtii (Fernie et al., 2012; Davis et al., 2013). With the availability of whole genome sequences of various species, metabolomics has the potential to become a useful tool for elucidating the functions of genes using large-scale systematic analyses (Fiehn et al., 2000; Saito and Matsuda, 2010; Hur et al., 2013).Although metabolomics data have the potential for identifying the roles of genes that are associated with metabolic phenotypes, the biochemical mechanisms that link functions of genes with metabolic phenotypes are still poorly characterized. For example, we do not yet know the principles behind how perturbing the expression of a single gene changes the metabolic system as a whole. Large-scale metabolomics data have provided useful resources for linking phenotypes to genotypes (Fiehn et al., 2000; Roessner et al., 2001; Tikunov et al., 2005; Schauer et al., 2006; Lu et al., 2011; Fukushima et al., 2014). For example, Lu et al. (2011) compared morphological and metabolic phenotypes from more than 5,000 Arabidopsis chloroplast mutants using gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS). Fukushima et al. (2014) generated metabolite profiles from various characterized and uncharacterized mutant plants and clustered the mutants with similar metabolic phenotypes by conducting multidimensional scaling with quantified metabolic phenotypes. Nonetheless, representation and analysis of such a large amount of data remains a challenge for scientific discovery (Lu et al., 2011). In addition, these studies do not examine the topological and functional characteristics of metabolic changes in the context of a genome-scale metabolic network. To understand the relationship between genotype and metabolic phenotype, we need to investigate the metabolic changes caused by perturbing the expression of a gene in a genome-scale metabolic network perspective, because metabolic pathways are not independent biochemical factories but are components of a complex network (Berg et al., 2002; Merico et al., 2009).Much progress has been made in the last 2 decades to represent metabolism at a genome scale (Terzer et al., 2009). The advances in genome sequencing and emerging fields such as biocuration and bioinformatics enabled the representation of genome-scale metabolic network reconstructions for model organisms (Bassel et al., 2012). Genome-scale metabolic models have been built and applied broadly from microbes to plants. The first step toward modeling a genome-scale metabolism in a plant species started with developing a genome-scale metabolic pathway database for Arabidopsis (AraCyc; Mueller et al., 2003) from reference pathway databases (Kanehisa and Goto, 2000; Karp et al., 2002; Zhang et al., 2010). Genome-scale metabolic pathway databases have been built for several plant species (Mueller et al., 2005; Zhang et al., 2005, 2010; Urbanczyk-Wochniak and Sumner, 2007; May et al., 2009; Dharmawardhana et al., 2013; Monaco et al., 2013, 2014; Van Moerkercke et al., 2013; Chae et al., 2014; Jung et al., 2014). Efforts have been made to develop predictive genome-scale metabolic models using enzyme kinetics and stoichiometric flux-balance approaches (Sweetlove et al., 2008). de Oliveira Dal’Molin et al. (2010) developed a genome-scale metabolic model for Arabidopsis and successfully validated the model by predicting the classical photorespiratory cycle as well as known key differences between redox metabolism in photosynthetic and nonphotosynthetic plant cells. Other genome-scale models have been developed for Arabidopsis (Poolman et al., 2009; Radrich et al., 2010; Mintz-Oron et al., 2012), C. reinhardtii (Chang et al., 2011; Dal’Molin et al., 2011), maize (Dal’Molin et al., 2010; Saha et al., 2011), sorghum (Sorghum bicolor; Dal’Molin et al., 2010), and sugarcane (Saccharum officinarum; Dal’Molin et al., 2010). These predictive models have the potential to be applied broadly in fields such as metabolic engineering, drug target discovery, identification of gene function, study of evolutionary processes, risk assessment of genetically modified crops, and interpretations of mutant phenotypes (Feist and Palsson, 2008; Ricroch et al., 2011).Here, we interrogate the metabotypes caused by 136 single gene perturbations of Arabidopsis by analyzing the relative concentration changes of 1,348 chemically identified metabolites using a reconstructed genome-scale metabolic network. We examine the characteristics of the changed metabolites (the metabolites whose relative concentrations were significantly different in mutants relative to the wild type) in the metabolic network to uncover biological and topological consequences of the perturbed genes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号