首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cyanobactins are small, cyclic peptides recently found in cyanobacteria. They are formed through proteolytic cleavage and posttranslational modification of short precursor proteins and exhibit antitumor, cytotoxic, or multi-drug-reversing activities. Using genome project data, bioinformatics, stable isotope labeling, and mass spectrometry, we discovered novel cyclic peptides, anacyclamides, in 27 Anabaena strains. The lengths of the anacylamides varied greatly, from 7 to 20 amino acids. Pronounced sequence variation was also detected, and only one amino acid, proline, was present in all anacyclamides. The anacyclamides identified included unmodified proteinogenic or prenylated amino acids. We identified an 11-kb gene cluster in the genome of Anabaena sp. 90, and heterologous expression in Escherichia coli confirmed that this cluster was responsible for anacyclamide production. The discovery of anacyclamides greatly increases the structural diversity of cyanobactins.Cyanobacteria are a prolific source of secondary metabolites with potential as drug leads or useful probes for cell biology studies (23). They include biomedically interesting compounds, such as the anticancer drug lead cryptophycin (15), and environmentally problematic hepatotoxic peptides, such as microcystins and nodularins produced by bloom-forming cyanobacteria (23). Many of these compounds contain nonproteinogenic amino acids and modified peptides and are produced by nonribosomal peptide synthesis (23, 26).The cyanobactins are a new group of cyclic peptides recently found in cyanobacteria (4). They are assembled through posttranslational proteolytic cleavage and head-to-tail macrocyclization of short precursor proteins. The cyanobactins are low-molecular-weight cyclic peptides that contain heterocyclized amino acids and can be prenylated or contain d-amino acids (3, 4). The cyanobactins that contain heterocyclized amino acids include patellamides, ulithiacyclamides, trichamide, tenuecyclamides, trunkamides, patellins, and microcyclamides and are synthesized in this manner (3, 4, 20, 24, 28). They possess antitumor, cytotoxic, and multi-drug-reversing activities and have potential as drug leads (4, 18, 20).Cyanobactins containing heterocyclized amino acids are found in a variety of cyanobacteria (4). A recent study demonstrated that the cyanobactin biosynthetic pathway is prevalent in planktonic bloom-forming cyanobacteria (14). However, the products of these gene clusters encoding new cyanobactins are unknown. Here we report discovery of a novel family of low-molecular-weight cyanobactins and show that these compounds are common in strains of the genus Anabaena. These anacyclamides exhibit pronounced length and sequence variation and contain unmodified or prenylated amino acids.  相似文献   

3.
4.
5.
6.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

7.
Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.Humic substances can play an important role in the reduction of Fe(III), and possibly other metals, in sedimentary environments (6, 34). Diverse dissimilatory Fe(III)-reducing microorganisms (3, 5, 7, 9, 11, 19-22, 25) can transfer electrons onto the quinone moieties of humic substances (38) or the model compound anthraquinone-2,6-disulfonate (AQDS). Reduced humic substances or AQDS abiotically reduces Fe(III) to Fe(II), regenerating the quinone. Electron shuttling in this manner can greatly increase the rate of electron transfer to insoluble Fe(III) oxides, presumably because soluble quinone-containing molecules are more accessible for microbial reduction than insoluble Fe(III) oxides (19, 22). Thus, catalytic amounts of humic substances have the potential to dramatically influence rates of Fe(III) reduction in soils and sediments and can promote more rapid degradation of organic contaminants coupled to Fe(III) reduction (1, 2, 4, 10, 24).To our knowledge, the mechanisms by which Fe(III)-reducing microorganisms transfer electrons to humic substances have not been investigated previously for any microorganism. However, reduction of AQDS has been studied using Shewanella oneidensis (17, 40). Disruption of the gene for MtrB, an outer membrane protein required for proper localization of outer membrane cytochromes (31), inhibited reduction of AQDS, as did disruption of the gene for the outer membrane c-type cytochrome, MtrC (17). However, in each case inhibition was incomplete, and it was suggested that there was a possibility of some periplasmic reduction (17), which would be consistent with the ability of AQDS to enter the cell (40).The mechanisms for electron transfer to humic substances in Geobacter species are of interest because molecular studies have frequently demonstrated that Geobacter species are the predominant Fe(III)-reducing microorganisms in sedimentary environments in which Fe(III) reduction is an important process (references 20, 32, and 42 and references therein). Geobacter sulfurreducens has routinely been used for investigations of the physiology of Geobacter species because of the availability of its genome sequence (29), a genetic system (8), and a genome-scale metabolic model (26) has made it possible to take a systems biology approach to understanding the growth of this organism in sedimentary environments (23).  相似文献   

8.
9.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

10.
Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members.Methanogens are integral to carbon cycling, catalyzing the production of methane and carbon dioxide, both potent greenhouse gases, during organic matter degradation in anaerobic soils and sediment (8). Methanogens are widespread in anaerobic environments, including tundra (36), freshwater lake and wetland sediments (9, 12), estuarine and marine sediments (2), acidic peatlands (4, 14), rice field soil (10, 16), animal guts (41), landfills (30), and anaerobic digesters treating animal manure (1), food processing wastewater (27), and municipal wastewater and solid waste (37, 57). Methane produced in anaerobic digesters may be captured and used for energy production, thus offsetting some or all of the cost of operation and reducing the global warming potential of methane release to the atmosphere.Methanogens are difficult to study through culture-based methods, and therefore many researchers have instead used culture-independent techniques to study methanogen populations. The 16S rRNA gene is the most widely used target for gene surveys, and a number of primers and probes have been developed to target methanogen groups (9, 11, 31, 36, 38, 40, 46, 48, 57). To eliminate potential problems with nonspecific amplification, some researchers have developed primers for the gene sequence of the α-subunit of the methyl coenzyme M reductase (mcrA) (17, 30, 49). The Mcr is exclusive to the methanogens with the exception of the methane-oxidizing Archaea (18) and shows mostly congruent phylogeny to the 16S rRNA gene, allowing mcrA analysis to be used in conjunction with, or independently of, that of the 16S rRNA gene (3, 30, 49). A number of researchers have examined methanogen communities with mcrA and have found uncultured clades quite different in sequence from cultured methanogen representatives (9, 10, 12, 14, 17, 22, 28, 47).Previous studies described methanogen communities by quantitation of different clades through the use of rRNA-targeted or rRNA gene-targeted probes with techniques such as dot blot hybridization (1, 27, 37, 38, 48) and fluorescent in situ hybridization (11, 40, 44, 57). Real-time quantitative PCR (qPCR) is an alternate technique capable of determining the copy number of a particular gene present in the DNA extracted from an environmental sample. Only a few studies have used qPCR to quantitatively examine different clades within methanogen communities, and most of these studies have exclusively targeted the 16S rRNA gene (19, 41, 42, 54-56). Far fewer researchers have used qPCR to quantify methanogen clades by targeting the mcrA (21, 34, 45), and these studies were limited to only a few phylogenetic groups.In this paper we present a methodology for determining methanogen gene copy numbers through the use of qPCR targeting the mcrA. Methanogens were quantified in total using methanogen-specific primers in SYBR green assays and also as members of nine different phylogenetic groups using TaqMan probes targeting specific subsets of methanogens.  相似文献   

11.
The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.Genetic recombination is a ubiquitous biological process that is both central to DNA repair pathways (10, 57) and an important evolutionary mechanism. By generating novel combinations of preexisting nucleotide polymorphisms, recombination can potentially accelerate evolution by increasing the population-wide genetic diversity upon which adaptive selection relies. Recombination can paradoxically also prevent the progressive accumulation of harmful mutations within individual genomes (18, 35, 53). Whereas its ability to defend high-fitness genomes from mutational decay possibly underlies the evolutionary value of sexuality in higher organisms, in many microbial species where pseudosexual genetic exchange is permissible among even highly divergent genomes, recombination can enable access to evolutionary innovations that would otherwise be inaccessible by mutation alone.Such interspecies recombination is fairly common in many virus families (8, 17, 27, 44, 82). It is becoming clear, however, that as with mutation events, most recombination events between distantly related genomes are maladaptive (5, 13, 38, 50, 63, 80). As genetic distances between parental genomes increase, so too does the probability of fitness defects in their recombinant offspring (16, 51). The viability of recombinants is apparently largely dependent on how severely recombination disrupts coevolved intragenome interaction networks (16, 32, 51). These networks include interacting nucleotide sequences that form secondary structures, sequence-specific protein-DNA interactions, interprotein interactions, and amino acid-amino acid interactions within protein three-dimensional folds.One virus family where such interaction networks appear to have a large impact on patterns of natural interspecies recombination are the single-stranded DNA (ssDNA) geminiviruses. As with other ssDNA viruses, recombination is very common among the species of this family (62, 84). Partially conserved recombination hot and cold spots have been detected in different genera (39, 81) and are apparently caused by both differential mechanistic predispositions of genome regions to recombination and natural selection disfavoring the survival of recombinants with disrupted intragenome interaction networks (38, 51).Genome organization and rolling circle replication (RCR)—the mechanism by which geminiviruses and many other ssDNA viruses replicate (9, 67, 79; see reference 24 for a review)—seem to have a large influence on basal recombination rates in different parts of geminivirus genomes (20, 33, 39, 61, 81). To initiate RCR, virion-strand ssDNA molecules are converted by host-mediated pathways into double-stranded “replicative-form” (RF) DNAs (34, 67). Initiated by a virus-encoded replication-associated protein (Rep) at a well-defined virion-strand replication origin (v-ori), new virion strands are synthesized on the complementary strand of RF DNAs (28, 73, 74) by host DNA polymerases. Virion-strand replication is concomitant with the displacement of old virion strands, which, once complete, yields covalently closed ssDNA molecules which are either encapsidated or converted into additional RF DNAs. Genome-wide basal recombination rates in ssDNA viruses are probably strongly influenced by the specific characteristics of host DNA polymerases that enable RCR. Interruption of RCR has been implicated directly in geminivirus recombination (40) and is most likely responsible for increased basal recombination rates both within genes transcribed in the opposite direction from that of virion-strand replication (40, 71) and at the v-ori (1, 9, 20, 69, 74).Whereas most ssDNA virus families replicate via either a rolling circle mechanism (the Nanoviridae, Microviridae, and Geminiviridae) (3, 23, 24, 31, 59, 67, 74) or a related rolling hairpin mechanism (the Parvoviridae) (25, 76), among the Circoviridae only the Circovirus genus is known to use RCR (45). Although the Gyrovirus genus (the other member of the Circoviridae) and the anelloviruses (a currently unclassified ssDNA virus group) might also use RCR, it is currently unknown whether they do or not (78). Additionally, some members of the Begomovirus genus of the Geminiviridae either have a second genome component, called DNA-B, or are associated with satellite ssDNA molecules called DNA-1 and DNA-Beta, all of which also replicate by RCR (1, 47, 68).Recombination is known to occur in the parvoviruses (19, 43, 70), microviruses (66), anelloviruses (40, 46), circoviruses (11, 26, 60), nanoviruses (30), geminivirus DNA-B components, and geminivirus satellite molecules (2, 62). Given that most, if not all, of these ssDNA replicons are evolutionarily related to and share many biological features with the geminiviruses (22, 31, 36), it is of interest to determine whether conserved recombination patterns observed in the geminiviruses (61, 81) are evident in these other groups. To date, no comparative analyses have ever been performed with different ssDNA virus families to identify, for example, possible influences of genome organization on recombination breakpoint distributions found in these viruses.Here we compare recombination frequencies and recombination breakpoint distributions in most currently described ssDNA viruses and satellite molecules and identify a number of sequence exchange patterns that are broadly conserved across this entire group.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Kinesins are a diverse superfamily of motor proteins that drive organelles and other microtubule-based movements in eukaryotic cells. These motors play important roles in multiple events during both interphase and cell division. Dictyostelium discoideum contains 13 kinesin motors, 12 of which are grouped into nine families, plus one orphan. Functions for 11 of the 13 motors have been previously investigated; we address here the activities of the two remaining kinesins, both isoforms with central motor domains. Kif6 (of the kinesin-13 family) appears to be essential for cell viability. The partial knockdown of Kif6 with RNA interference generates mitotic defects (lagging chromosomes and aberrant spindle assemblies) that are consistent with kinesin-13 disruptions in other organisms. However, the orphan motor Kif9 participates in a completely novel kinesin activity, one that maintains a connection between the microtubule-organizing center (MTOC) and nucleus during interphase. kif9 null cell growth is impaired, and the MTOC appears to disconnect from its normally tight nuclear linkage. Mitotic spindles elongate in a normal fashion in kif9 cells, but we hypothesize that this kinesin is important for positioning the MTOC into the nuclear envelope during prophase. This function would be significant for the early steps of cell division and also may play a role in regulating centrosome replication.Directed cell migration, organelle transport, and cell division involve fundamental motilities that are necessary for eukaryotic cell viability and function. Much of the force required for these motilities is generated through the cyclical interactions of motor proteins with the cell cytoskeleton. Microtubules (MTs) and actin filaments provide structural support and directional guides, and all eukaryotic organisms have diverse, often extensive families of motors that carry out different tasks. Functional studies have revealed that many of the motors work in combination with others, and that the individual deletion of a single motor activity often is insufficient to produce a defect that substantially impairs cell growth or function. The latter phenomenon is particularly evident in some organisms with simple motor families (14, 42). By contrasting homologous motor functions between simple and complex systems, we hope to learn the details of how each motor is custom-tuned for specific tasks.Dictyostelium discoideum is a compact amoeba that exhibits robust forms of motility common to nearly all animal cells, with speeds that frequently exceed corresponding rates in vertebrate cell models (25, 33, 54). Since Dictyostelium possesses a relatively small number of motor proteins (13 kinesin, 1 dynein, and 13 myosin isoforms [23, 24, 26]), it combines advantages of terrific cytology with straightforward molecular genetics and thus represents an excellent model to investigate individual and combined motor protein actions. To date, 11 of the 13 kinesin motors have been analyzed functionally (5, 17, 18, 30, 42, 46, 51, 60). Only 1 of these 11 motors, Kif3, a member of the kinesin-1 family of organelle transporters, appears to be essential for organism viability (51). Individual disruptions of three kinesin genes (kif1, kif4, and kif12) produce distinctive defects in cell growth or organelle transport (30, 42, 46). Analyses of six of the seven other kinesins reveal important phenotypes but only when combined with other motor disruptions or cell stresses. We address here the roles of the remaining two Dictyostelium MT-based motors.kif6 and kif9 encode two central motor kinesins in the Dictyostelium genome (24). The best-studied isoforms of this motor type are represented by the kinesin-13 family, and they largely function to regulate MT length during cell division (13, 16, 40, 41). In some organisms, kinesin-13 motors also have been shown to operate during interphase and to mediate MT and flagellar length control (3, 4, 15) and perhaps even organelle transport (32, 43, 56). kif6 encodes the kinesin-13 family member in Dictyostelium. We demonstrate that Kif6 activity is essential for viability, and that it plays a primary, conserved role in chromosome segregation during cell division.The second of the central motor kinesins, Kif9, does not group with an existing family (24, 38). The gene disruption of this motor reveals a completely novel function for a kinesin in maintaining a connection between the MT-organizing center (MTOC) and the nucleus. By electron microscopy (EM), the MTOC of Dictyostelium appears as a cytoplasmic cube-shaped structure surrounded by amorphous dense material (39, 44). EM, biochemical analyses, antibody labeling, and live-cell imaging studies have demonstrated that during interphase, the cytoplasmic MTOC is firmly and closely attached to the nucleus (28, 29, 44, 48, 49, 63). Upon entry into mitosis, the MTOC duplicates during prophase and is brought to or into a fenestration of the nuclear envelope, and then it establishes an intranuclear bipolar spindle for division (39, 53, 64). While MTOCs can be purified from Dictyostelium, the methods rely heavily on reagents that actively disrupt the attached nuclei (10, 59). A recent study has identified at least one component of this connection, the nuclear envelope protein Sun-1 (67). The perturbation of Sun-1 affects nuclear shape and results in centrosome detachment, hyperamplification, and aneuploidy. We demonstrate in the current work that the disruption of the Kif9 kinesin also perturbs the MTOC-nucleus linkage. Our results suggest that an MT-mediated mechanism plays a significant role in maintaining an MTOC-nucleus connection during interphase, and we discuss how this connection could be important to regulate centrosome replication and ensure proper chromosome segregation during cell division.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号