首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Activation of the high affinity IgE-binding receptor (FcεRI) results in the tyrosine phosphorylation of two conserved tyrosines located close to the COOH terminus of the protein-tyrosine kinase Syk. Synthetic peptides representing the last 10 amino acids of the tail of Syk with these two tyrosines either nonphosphorylated or phosphorylated were used to precipitate proteins from mast cell lysates. Proteins specifically precipitated by the phosphorylated peptide were identified by mass spectrometry. These included the adaptor proteins SLP-76, Nck-1, Grb2, and Grb2-related adaptor downstream of Shc (GADS) and the protein phosphatases SHIP-1 and TULA-2 (also known as UBASH3B or STS-1). The presence of these in the precipitates was further confirmed by immunoblotting. Using the peptides as probes in far Western blots showed direct binding of the phosphorylated peptide to Nck-1 and SHIP-1. Immunoprecipitations suggested that there were complexes of these proteins associated with Syk especially after receptor activation; in these complexes are Nck, SHIP-1, SLP-76, Grb2, and TULA-2 (UBASH3B or STS-1). The decreased expression of TULA-2 by treatment of mast cells with siRNA increased the FcεRI-induced tyrosine phosphorylation of the activation loop tyrosines of Syk and the phosphorylation of phospholipase C-γ2. There was parallel enhancement of the receptor-induced degranulation and activation of nuclear factor for T cells or nuclear factor κB, indicating that TULA-2, like SHIP-1, functions as a negative regulator of FcεRI signaling in mast cells. Therefore, once phosphorylated, the terminal tyrosines of Syk bind complexes of proteins that are positive and negative regulators of signaling in mast cells.  相似文献   

2.
Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/φ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/φ)(T/S)(D/E)pY(G/A/S/Q) (where φ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1–6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp164, which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.  相似文献   

3.
TULA proteins regulate activity of the protein tyrosine kinase Syk   总被引:1,自引:0,他引:1  
TULA belongs to a two-member family: TULA (STS-2) is a lymphoid protein, whereas STS-1/TULA-2 is expressed ubiquitously. TULA proteins were implicated in the regulation of signaling mediated by protein tyrosine kinases (PTKs). The initial experiments did not fully reveal the molecular mechanism of these effects, but suggested that both TULA proteins act in a similar fashion. It was shown recently that STS-1/TULA-2 dephosphorylates PTKs. In this study, we analyzed the effects of TULA proteins on Syk, a PTK playing an important role in lymphoid signaling. First, we have shown that TULA-2 decreases tyrosine phosphorylation of Syk in vivo and in vitro and that the intact phosphatase domain of TULA-2 is essential for this effect. We have also shown that TULA-2 exhibits a certain degree of substrate specificity. Our results also indicate that inactivated TULA-2 increases tyrosine phosphorylation of Syk in cells co-transfected to overexpress these proteins, thus acting as a dominant-negative form that suppresses dephosphorylation of Syk caused by endogenous TULA-2. Furthermore, we have demonstrated that phosphatase activity of TULA is negligible as compared to that of TULA-2 and that this finding correlates with an increase in Syk tyrosine phosphorylation in cells overexpressing TULA. This result is consistent with the dominant-negative effect of inactivated TULA-2, arguing that TULA acts in this system as a negative regulator of TULA-2-dependent dephosphorylation. To summarize, our findings indicate that TULA proteins may exert opposite effects on PTK-mediated signaling and suggest that a regulatory mechanism based on this feature may exist.  相似文献   

4.
The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents.  相似文献   

5.
We identified the major autophosphorylation sites in the insulin receptor and correlated their phosphorylation with the phosphotransferase activity of the receptor on synthetic peptides. The receptor, purified from Fao hepatoma cells on immobilized wheat germ agglutinin, undergoes autophosphorylation at several tyrosine residues in its beta-subunit; however, anti-phosphotyrosine antibody (alpha-PY) inhibited most of the phosphorylation by trapping the initial sites in an inactive complex. Exhaustive trypsin digestion of the inhibited beta-subunit yielded two peptides derived from the Tyr-1150 domain (Ullrich, A, Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) called pY4 and pY5. Both peptides contained 2 phosphotyrosyl residues (2Tyr(P], one corresponding to Tyr-1146 and the other to Tyr-1150 or Tyr-1151. In the absence of the alpha-PY additional sites were phosphorylated. The C-terminal domain of the beta-subunit contained phosphotyrosine at Tyr-1316 and Tyr-1322. Removal of the C-terminal domain by mild trypsinolysis did not affect the phosphotransferase activity of the beta-subunit suggesting that these sites did not play a regulatory role. Full activation of the insulin receptor during in vitro assay correlated with the appearance of two phosphopeptides in the tryptic digest of the beta-subunit, pY1 and pY1a, that were inhibited by the alpha-PY. Structural analysis suggested that pY1 and pY1a were derived from the Tyr-1150 domain and contained 3 phosphotyrosyl residues (3Tyr(P] corresponding to Tyr-1146, Tyr-1150, and Tyr-1151. The phosphotransferase of the receptor that was phosphorylated in the presence of alpha-PY at 2 tyrosyl residues in the Tyr-1150 domain was not fully activated during kinase assays carried out with saturating substrate concentrations which inhibited further autophosphorylation. During insulin stimulation of the intact cell, the 3Tyr(P) form of the Tyr-1150 domain was barely detected, whereas the 2Tyr(P) form predominated. We conclude that 1) autophosphorylation of the insulin receptor begins by phosphorylation of Tyr-1146 and either Tyr-1150 or Tyr-1151; 2) progression of the cascade to phosphorylation of the third tyrosyl residue fully activates the phosphotransferase during in vitro assay; 3) in vivo, the 2Tyr(P) form predominates, suggesting that progression of the autophosphorylation cascade to the 3Tyr(P) form is regulated during insulin stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
UBASH3/STS/TULA is a novel two-member family, which exerts several key regulatory effects in multiple cell types. UBASH3B/STS-1/TULA-2 is a highly active protein tyrosine phosphatase; its major target appears to be a specific regulatory site of protein tyrosine kinases of the Syk family, dephosphorylation of which inhibits Syk and Zap-70 kinases and suppresses receptor signaling mediated by these kinases. UBASH3A/STS-2/TULA exhibits substantial homology to UBASH3B/STS-1/TULA-2, but possesses only a small fraction of phosphatase activity of UBASH3B/STS-1/TULA-2, and thus, its regulatory effect may be based also on the phosphatase-independent mechanisms. Critical physiologic effects of these proteins have been demonstrated in T lymphocytes, platelets, stem cells, and other important cell types. These proteins have also been shown to play a key role in such pathologic conditions as autoimmunity, cancer, and thrombosis. The review focuses on the recent studies of this important family of cellular regulators.  相似文献   

7.
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcϵRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcϵRI-induced degranulation, nuclear factor for T cell activation and NFκB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.  相似文献   

8.
Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)n, into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67—Thr-69 and Ile-106–Val-112) to interact with (NAG)n, generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Å along the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)n reveal (NAG)2, (NAG)2, and (NAG)4 in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)4; in an intermediate state, E145Q/Y227F with a boat-form NAG at the −1 subsite, −1-(NAG); after hydrolysis, E145Q with a chair form −1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between −1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of −1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of −1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)n provide new insights into its substrate binding and the mechanistic action.  相似文献   

9.
Exo-1,5-α-l-arabinofuranosidases belonging to glycoside hydrolase family 43 have strict substrate specificity. These enzymes hydrolyze only the α-1,5-linkages of linear arabinan and arabino-oligosaccharides in an exo-acting manner. The enzyme from Streptomyces avermitilis contains a core catalytic domain belonging to glycoside hydrolase family 43 and a C-terminal arabinan binding module belonging to carbohydrate binding module family 42. We determined the crystal structure of intact exo-1,5-α-l-arabinofuranosidase. The catalytic module is composed of a 5-bladed β-propeller topologically identical to the other family 43 enzymes. The arabinan binding module had three similar subdomains assembled against one another around a pseudo-3-fold axis, forming a β-trefoil-fold. A sugar complex structure with α-1,5-l-arabinofuranotriose revealed three subsites in the catalytic domain, and a sugar complex structure with α-l-arabinofuranosyl azide revealed three arabinose-binding sites in the carbohydrate binding module. A mutagenesis study revealed that substrate specificity was regulated by residues Asn-159, Tyr-192, and Leu-289 located at the aglycon side of the substrate-binding pocket. The exo-acting manner of the enzyme was attributed to the strict pocket structure of subsite −1, formed by the flexible loop region Tyr-281–Arg-294 and the side chain of Tyr-40, which occupied the positions corresponding to the catalytic glycon cleft of GH43 endo-acting enzymes.  相似文献   

10.
Kasahara T  Kasahara M 《FEBS letters》2000,471(1):103-107
Three critical aromatic sites have been identified in the yeast galactose transporter Gal2: Tyr(352) at the extracellular boundary of putative transmembrane segment (TM) 7, Tyr(446) in the middle of TM10 and Phe(504) in the middle of TM12. The relationship between these sites was investigated by random mutagenesis of each combination of two of the three residues. Galactose transport-positive clones selected by plate assays encoded Tyr(446) and specific combinations of aromatic residues at sites 352 and 504. Double-site mutants containing aromatic residues at these latter two positions showed either essentially full galactose transport activity (Phe(352)Trp(504) and Trp(352)Trp(504)) or no significant activity (Phe(352)Tyr(504) and Trp(352)Tyr(504)), whereas single-site mutants showed markedly reduced activity. These results are indicative of a specific interaction between sites 352 and 504 of Gal2.  相似文献   

11.
It was previously reported that an unique peroxidase isoenzyme, cationic cell-wall-bound peroxidase (CWPO-C), from poplar callus oxidizes sinapyl alcohol, ferrocytochrome c and synthetic lignin polymers, unlike other plant peroxidases. Here, the catalytic mechanism of CWPO-C was investigated using chemical modification and homology modeling. The simulated CWPO-C structure predicts that the entrance to the heme pocket of CWPO-C is the same size as those of other plant peroxidases, suggesting that ferrocytochrome c and synthetic lignin polymers cannot interact with the heme of CWPO-C. Since Trp and Tyr residues are redox-active, such residues located on the protein surface were predicted to be active sites for CWPO-C. Modification of CWPO-C Trp residues did not suppress its oxidation activities toward guaiacol and syringaldazine. On the other hand, modification of CWPO-C Tyr residues using tetranitromethane strongly suppressed its oxidation activities toward syringaldazine and 2,6-dimethoxyphenol by 90%, respectively, and also suppressed its guaiacol oxidation activity to a lesser extent. Ferrocytochrome c was not oxidized by Tyr-modified CWPO-C. These results indicate that the Tyr residues in CWPO-C mediate its oxidation of syringyl compounds and high-molecular-weight substrates. Homology modeling indicates that Tyr-177 and Tyr-74 are located near the heme and exposed on the protein surface of CWPO-C. These results suggest that Tyr residues on the protein surface are considered to be important for the oxidation activities of CWPO-C with a wide range of substrates, and potentially unique oxidation sites for the plant peroxidase family.  相似文献   

12.
Kappa (κ) opioid receptor selective antagonists are useful pharmacological tools in studying κ opioid receptors and have potential to be used as therapeutic agents for the treatment of a variety of diseases including mood disorders and drug addiction. Arodyn (Ac[Phe1–3,Arg4,d-Ala8]Dyn A-(1–11)NH2) is a linear acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al. J Med Chem 2002;45:5617–5619) and prevents stress-induced reinstatement of cocaine-seeking behavior following central administration (Carey et al. Eur J Pharmacol 2007;569:84–89). To restrict its conformational mobility, explore possible bioactive conformations and potentially increase its metabolic stability we synthesized cyclic arodyn analogs on solid phase utilizing a novel ring-closing metathesis (RCM) reaction involving allyl-protected Tyr (Tyr(All)) residues. This approach preserves the aromatic functionality and directly constrains the side chains of one or more of the Phe residues. The novel cyclic arodyn analog 4 cyclized between Tyr(All) residues incorporated in positions 2 and 3 exhibited potent κ opioid receptor antagonism in the [35S]GTPγS assay (KB?=?3.2?nM) similar to arodyn. Analog 3 cyclized between Tyr(All) residues in positions 1 and 2 also exhibited nanomolar κ opioid receptor antagonist potency (KB?=?27.5?nM) in this assay. These are the first opioid peptides cyclized via RCM involving aromatic residues, and given their promising pharmacological activity represent novel lead peptides for further exploration.  相似文献   

13.

Background

The 3C-like protease (3CLpro) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection.

Methodology/Principal Findings

To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3'' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high β-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without β-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1'' position prefers small residues, while P2'' and P3'' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3'' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence.

Conclusions/Significance

Our results demonstrated a strong structure-activity relationship between the 3CLpro and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors.  相似文献   

14.
We have previously shown that the L-type calcium channel (LCC) antagonist nilvadipine reduces brain amyloid-β (Aβ) accumulation by affecting both Aβ production and Aβ clearance across the blood-brain barrier (BBB). Nilvadipine consists of a mixture of two enantiomers, (+)-nilvadipine and (−)-nilvadipine, in equal proportion. (+)-Nilvadipine is the active enantiomer responsible for the inhibition of LCC, whereas (−)-nilvadipine is considered inactive. Both nilvadipine enantiomers inhibit Aβ production and improve the clearance of Aβ across the BBB showing that these effects are not related to LCC inhibition. In addition, treatment of P301S mutant human Tau transgenic mice (transgenic Tau P301S) with (−)-nilvadipine reduces Tau hyperphosphorylation at several Alzheimer disease (AD) pertinent epitopes. A search for the mechanism of action of (−)-nilvadipine revealed that this compound inhibits the spleen tyrosine kinase (Syk). We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (−)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. We show that Syk inhibition induces an increased phosphorylation of the inhibitory Ser-9 residue of glycogen synthase kinase-3β, a primary Tau kinase involved in Tau phosphorylation, by activating protein kinase A, providing a mechanism explaining the reduction of Tau phosphorylation at GSK3β-dependent epitopes following Syk inhibition. Altogether our data highlight Syk as a promising target for preventing both Aβ accumulation and Tau hyperphosphorylation in AD.  相似文献   

15.
Substrate specificity of human pancreatic elastase 2   总被引:4,自引:0,他引:4  
The substrate specificity of human pancreatic elastase 2 was investigated by using a series of peptide p-nitroanilides. The kinetic constants, kcat and Km, for the hydrolysis of these peptides revealed that this serine protease preferentially hydrolyzes peptides containing P1 amino acids which have medium to large hydrophobic side chains, except for those which are disubstituted on the first carbon of the side chain. Thus, human pancreatic elastase 2 appears to be similar in peptide bond specificity to the recently described porcine pancreatic elastase 2 [Gertler, A., Weiss, Y., & Burstein, Y. (1977) Biochemistry 16, 2709] but differs significantly in specificity from porcine elastase 1. The best substrates for human pancreatic elastase 2 were glutaryl-Ala-Ala-Pro-Leu-p nitroanilide and succinyl-Ala-Ala-Pro-Met-p-nitroanilide. However, there was little difference among substrates with leucine, methionine, phenylalanine, tyrosine, norvaline, or norleucine in the P1 position. Changes in the hydrolysis rate of peptides with differing P5 residues indicate that this enzyme has an extended binding site which interacts with at least five residues of peptide substrates. The overall catalytic efficiency of human pancreatic elastase 2 is significantly lower than that of porcine elastase 1 or bovine chymotrypsin with the compounds studied.  相似文献   

16.
 HLA-B*3501 and -B*5101 molecules, which belong to the HLA-B5 cross-reactive group, bind peptides carrying similar anchor residues at P2 and the C-terminus, but differences are observed in the preference for a Tyr residue at the C-terminus and the affinity of peptides. A recent study of HLA-B*3501 crystal structure suggested that residue 116 on the floor of the F-pocket determines a preference for anchor residues at the C-terminus. In order to evaluate the role of the residue 116 in the peptide binding to both HLA-B*3501 and HLA-B*5101 molecules, we generated HLA-B*3501 mutant molecules carrying Tyr at residue 116 (B*3501–116Y) and tested the binding of a panel of nonamer peptides to the B*3501–116Y molecules by a stabilization assay with RMA-S transfectants expressing the mutant molecules. The substitution of Tyr for Ser at residue 116 markedly reduced the affinity of nonamer peptides carrying Tyr at P9, while it enhanced that of nonamer peptides carrying Ile and Leu at P9. On the other hand, the affinity of peptides carrying aliphatic hydrophobic residues at P9 to B*3501–116Y molecules was much higher than that to HLA-B*3501 and HLA-B*5101 molecules. These results indicate that residue 116 is critical for the structural difference of the F-pocket between HLA-B*3501 and HLA-B*5101 which determines the C-terminal anchor residues, while leaving other residues which differ between HLA-B*3501 and HLA-B*5101 may be responsible for the low peptide binding property of the latter. Received: 18 April 1997 / Revised: 18 September 1997  相似文献   

17.
Two members of the UBASH3/STS/TULA family exhibit a unique protein domain structure, which includes a histidine phosphatase domain, and play a key role in regulating cellular signaling. UBASH3A/STS-2/TULA is mostly a lymphoid protein, while UBASH3B/STS-1/TULA-2 is expressed ubiquitously. Dephosphorylation of tyrosine-phosphorylated proteins by TULA-2 and, probably to a lesser extent, by TULA critically contribute to the molecular basis of their regulatory effect. The notable differences between the effects of the two family members on cellular signaling and activation are likely to be linked to the difference between their specific enzymatic activities. However, these differences might also be related to the functions of their domains other than the phosphatase domain and independent of their phosphatase activity. The down-regulation of the Syk/Zap-70-mediated signaling, which to-date appears to be the best-studied regulatory effect of TULA family, is discussed in detail in this publication.  相似文献   

18.
Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues 90GLALIVAGV98); and (ii) a peptide comprised of the full TM4(85–105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88–100), and then “staple” this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-88VVGLXLIZXGVVV100-KKK-NH2 (X = 2-(4′-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn95 peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88–100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.  相似文献   

19.
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).  相似文献   

20.
The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6′P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6′P (a non-metabolizable analog of cellobiose-6′P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr126, Tyr303, and Trp338, at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser424, Lys430, and Tyr432 of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite −1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号