首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   

2.

Background

Inflammatory bowel diseases (IBDs) appear to be modulated by the interaction of pathogen-associated molecular patterns (PAMPs) derived from intestinal bacteria with their respective innate immune receptors, including Toll-like receptors (TLRs). We aimed to establish if intestinal concentrations of proinflammatory bacterial ligands of TLR2, TLR4, or TLR5 may be altered in murine IBD models, and to characterize which of the major bacterial groups may contribute to each signal.

Methodology/Principal Findings

PAMPs specific for TLR2 (lipopeptide equivalents), TLR4 (lipopolysaccharide equivalents), and TLR5 (flagellin equivalents) in human and murine fecal and intestinal samples were quantified using HEK-293 cells transfected with respective TLRs and calibrated with defined standard PAMPs. The induction of colitis in mice by dextran-sodium-sulphate treatment significantly increased colonic lipopeptide (fourfold) and LPS equivalent (550-fold) concentrations, while flagellin equivalent concentrations remained similar. The induction of ileitis by oral infection with Toxoplasma gondii dramatically increased ileal concentrations of lipopeptide (370-fold), LPS (3,300-fold), and flagellin equivalents (38-fold), all P<0.01. Analysis of representative strains of the major bacterial groups of the human intestine revealed that enterobacterial species are likely to be more significant contributors of soluble TLR2 and TLR4 stimulants to the intestinal milieu than Bacteroides species or Gram-positive Firmicutes.

Conclusions/Significance

We conclude that the induction of colitis or ileitis in mice is associated with significant disease-specific alterations to the PAMP profile of the gut microbiota.  相似文献   

3.
MD-2 is associated with Toll-like receptor 4 (TLR4) on the cell surface and enables TLR4 to respond to LPS. We tested whether MD-2 enhances or enables the responses of both TLR2 and TLR4 to Gram-negative and Gram-positive bacteria and their components. TLR2 without MD-2 did not efficiently respond to highly purified LPS and LPS partial structures. MD-2 enabled TLR2 to respond to nonactivating protein-free LPS, LPS mutants, or lipid A and enhanced TLR2-mediated responses to both Gram-negative and Gram-positive bacteria and their LPS, peptidoglycan, and lipoteichoic acid components. MD-2 enabled TLR4 to respond to a wide variety of LPS partial structures, Gram-negative bacteria, and Gram-positive lipoteichoic acid, but not to Gram-positive bacteria, peptidoglycan, and lipopeptide. MD-2 physically associated with TLR2, but this association was weaker than with TLR4. MD-2 enhanced expression of both TLR2 and TLR4, and TLR2 and TLR4 enhanced expression of MD-2. Thus, MD-2 enables both TLR4 and TLR2 to respond with high sensitivity to a broad range of LPS structures and to lipoteichoic acid, and, moreover, MD-2 enhances the responses of TLR2 to Gram-positive bacteria and peptidoglycan, to which the TLR4-MD-2 complex is unresponsive.  相似文献   

4.
Dendritic cells (DC) are APCs essential for the development of primary immune responses. In pluristratified epithelia, Langerhans cells (LC) are a critical subset of DC which take up Ags and migrate toward lymph nodes upon inflammatory stimuli. TLR allow detection of pathogen-associated molecular patterns (PAMP) by different DC subsets. The repertoire of TLR expressed by human LC is uncharacterized and their ability to directly respond to PAMP has not been systematically investigated. In this study, we show for the first time that freshly purified LC from human skin express mRNA encoding TLR1, TLR2, TLR3, TLR5, TLR6 and TLR10. In addition, keratinocytes ex vivo display TLR1-5, TLR7, and TLR10. Accordingly, highly enriched immature LC efficiently respond to TLR2 agonists peptidoglycan and lipoteichoic acid from Gram-positive bacteria, and to dsRNA which engages TLR3. In contrast, LC do not directly sense TLR7/8 ligands and LPS from Gram-negative bacteria, which signals through TLR4. TLR engagement also results in cytokine production, with marked differences depending on the PAMP detected. TLR2 and TLR3 ligands increase IL-6 and IL-8 production, while dsRNA alone stimulates TNF-alpha release. Strikingly, only peptidoglycan triggers IL-10 secretion, thereby suggesting a specific function in tolerance to commensal Gram-positive bacteria. However, LC do not produce IL-12p70 or type I IFNs. In conclusion, human LC are equipped with TLR that enable direct detection of PAMP from viruses and Gram-positive bacteria, subsequent phenotypic maturation, and differential cytokine production. This implies a significant role for LC in the control of skin immune responses.  相似文献   

5.
Toll-like receptors (TLRs) are important components of innate immunity. They were found to recognise specific structures on pathogens termed pathogen-associated molecular patterns (PAMPs) and utilise conserved signaling pathways to activate pro-inflammatory cytokines and type-1 interferons. In spite of much understanding gained from the mammalian systems, many fish TLRs are unknown. Recent studies in Japanese flounder as well as in zebrafish suggested that the ligand binding and activation of inflammatory responses in fish may be different from and more complex than those found in mammals. In channel catfish, the major aquaculture species in the United States, only partial sequences of TLR3 and TLR5 were reported. As a part of efforts to characterise the innate immune components in channel catfish, here we cloned and sequenced both the cDNA and the gene for TLR2, a receptor believed mostly responsible for recognition of lipopeptides on the surface of most Gram-positive bacteria. However, expression analysis after infection with a Gram-negative bacterium, Edwardsiella ictaluri indicated that TLR2 was modestly down-regulated in the head kidney tissue of blue catfish, and with a similar pattern in the head kidney of channel catfish though the down-regulation in channel catfish was not statistically significant. In the spleen, an insignificant down-regulation was initially observed early after infection, with an increase of TLR expression later after infection. These results suggest the involvement of TLR2 in the responses after the bacterial infection. As LPS is believed to be the major PAMP for Gram-negative bacteria, additional research is warranted to determine the functions and mechanisms of TLR2 in infections of Gram-negative bacteria.  相似文献   

6.
In contrast to the role of lipopolysaccharide from Gram-negative bacteria, the role of Gram-positive bacterial components in inducing inflammation in the CNS remains controversial. We studied the potency of highly purified lipoteichoic acid and muramyl dipeptide isolated from Staphylococcus aureus to activate primary cultures of rat microglia. Exposure of pure microglial cultures to lipoteichoic acid triggered a significant time- and dose-dependent production of pro-inflammatory cytokines (tumour-necrosis factor-alpha, interleukin-1beta, interleukin-6) and nitric oxide. Muramyl dipeptide strongly and selectively potentiated lipoteichoic acid-induced inducible nitric oxide synthase expression and nitric oxide production. However, it did not have any significant influence on the production of pro-inflammatory cytokines. As bacterial components are recognised by the innate immunity through Toll-like receptors (TLRs) we showed that lipoteichoic acid was recognised in microglia by the TLR2 and lipopolysaccharide by the TLR4, as cells isolated from mice lacking TLR2 or TLR4 did not produce pro-inflammatory cytokines and nitric oxide upon lipoteichoic acid or lipopolysaccharide stimulation, respectively. Lipoteichoic acid-induced glia activation was mediated by p38 and ERK1/2 MAP kinases, as pretreatment with inhibitor of p38 or ERK1/2 decreased lipoteichoic acid-induced cytokine release, iNOS mRNA expression and nitric oxide production. The observed pro-inflammatory response induced by lipoteichoic acid-activated microglia could play a major role in the inflammatory response of CNS induced by Gram-positive bacteria.  相似文献   

7.
Cyclooxygenase 2 (COX)-2 is induced by bacterial and viral infections and has complex, poorly understood roles in anti-pathogen immunity. Here, we use a knock-in luciferase reporter model to image Cox2 expression across a range of tissues in mice following treatment with the either the prototypical bacterial pathogen-associated molecular pattern (PAMP), LPS, which activates Toll-like receptor (TLR)4, or with poly(I:C), a viral PAMP, which activates TLR3. LPS induced Cox2 expression in all tissues examined. In contrast, poly(I:C) elicited a milder response, limited to a subset of tissues. A panel of cytokines and interferons was measured in plasma of wild-type, Cox1−/− and Cox2−/− mice treated with LPS, poly(I:C), MALP2 (TLR2/6), Pam3CSK4 (TLR2/1), R-848 (TLR7/8) or CpG ODN (TLR9), to establish whether/how each COX isoform modulates specific PAMP/TLR responses. Only LPS induced notable loss of condition in mice (inactivity, hunching, piloerection). However, all TLR agonists produced cytokine responses, many of which were modulated in specific fashions by Cox1 or Cox2 gene deletion. Notably we observed opposing effects of Cox2 gene deletion on the responses to the bacterial PAMP, LPS, and the viral PAMP, poly(I:C), consistent with the differing abilities of the PAMPs to induce Cox2 expression. Cox2 gene deletion limited the plasma IL-1β and interferon-γ responses and hypothermia produced by LPS. In contrast, in response to poly(I:C), Cox2−/− mice exhibited enhanced plasma interferon (IFNα,β,γ,λ) and related cytokine responses (IP-10, IL-12). These observations suggest that a COX-2 selective inhibitor, given early in infection, may enhance and/or prolong endogenous interferon responses, and thereby increase anti-viral immunity.  相似文献   

8.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.  相似文献   

9.
Although pathogenic bacteria penetrate colonic cells causing infection, the role of its surface molecules serving as key Toll-like receptor (TLR) ligands and triggering response remains unexplored. We show that TLR2-ligand porin up-regulated TLR4 on HT-29 cells, which the TLR4-ligand LPS could not. TLR1 that co-express with TLR2 got stimulated with TLR4. Besides the two TLRs, MD-2 was expressed revealing that the TLR4 co-receptor is not exclusive for LPS signaling. SARM-1 that mostly down-regulates TLR-signaling, demonstrated central role in signaling by engaging IRF-3 and NF-κB for cell activity. Porin induced type 1 chemokines particularly MCP-3, while porin-stimulated HT-29 culture supernatant displayed PBMC migration, collectively suggesting that the chemokines influence colon and immune cell cross-talk. In TLR2 down-regulated HT-29 cells, we found TLR1 and TLR4 as substitute TLRs to identify porin and orchestrate signaling. Thus, TLR replacement for PAMP recognition demonstrates specificity of ligand·TLR association can compromise and is a necessary alternative for successful execution of immune responses.  相似文献   

10.
In addition to its clean-up function, autophagy is considered as an innate immunity mechanism due to its role in the removal of intracellular pathogens. Toll-like receptors (TLRs) are crucial components of innate immunity involved in the recognition of a diverse array of microbial products. Recent works demonstrated that different pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) and single-strand RNA are able to induce autophagy via different TLRs in immune cells. In a recent report, we showed that bacterial CpG motifs, another PAMP, can induce autophagy in rodent and human tumor cell lines and that this process is TLR9-dependent. In addition, an increase in the number of autophagosomes can also be observed in vivo after the intratumoral injection of CpG motifs. These results extend the link between TLRs and autophagy to non-immune tumor cells and may be relevant for cancer treatment and more generally for gene therapy approaches in TLR9-positive tissues. In this addendum, we discuss the potential mechanisms and the consequences of the CpG-induced autophagy in tumor cells.  相似文献   

11.
12.
We have recently demonstrated that oxidants can activate monocytes via an action on Toll-like receptor (TLR) 2; however, it is unclear what functional consequence this has on immune surveillance for Gram-negative and -positive bacteria. Gram-negative and -positive bacteria and their related pathogen-associated molecular patterns (PAMPs) are sensed by TLR4 and TLR2, respectively. In the current study, we used a human monocyte cell line to show that oxidants prime cells to subsequent challenge with Gram-negative or -positive bacteria as well as PAMPs specific for TLR4 (LPS), TLR2/1 (Pam(3)CSK4), TLR2/6 (FSL-1), Nod1 (FK565), and Nod2 (MDP Lys 18). Similarly, activation of TLR4 with LPS primed for subsequent activation of cells by agonists of the TLR2/6 or TLR2/1 complex. However, no synergy was noted when cells were costimulated with Pam(3)CSK4 and FSL-1. We then tested blood (and isolated monocytes) derived from healthy smokers, which is oxidant primed, making it more sensitive to bacterial or PAMP stimulation when compared with blood of nonsmokers. Thus an oxidant stimulation, possibly via an action on TLR2 or associated transduction pathways, provides a signal that initiates inflammatory responses and sensitizes cells to pathogenic insults.  相似文献   

13.

Aims

The biological reaction to wear debris is critical to the osteolysis underlying aseptic loosening of joint prosthetic implants. In an attempt to reduce aseptic loosening, ceramics have been introduced. This study was designed to evaluate, compare and correlate the expression of Toll-like receptors (TLRs), their intracellular adaptors and proinflammatory cytokines in cultured macrophages challenged with titanium or zirconia particles, as well as particle-induced osteolysis in calvaria and hyperalgesia and edema in hind paw.

Main methods

TLRs and their adaptors were evaluated at the mRNA level by RT-PCR, and cytokine expression was evaluated at the mRNA and protein levels. Osteolysis and hyperalgesia and edema were evaluated in vivo, in calvaria and hind paw, respectively.

Key findings

Cultured macrophages challenged with zirconia or titanium particles expressed increased mRNA for TLRs 2, 3, 4 and 9, and their adaptors MyD88, TRIF and NF-κB and cytokines TNF-α, IL-1β and IL-6, which were also increased at protein level. Quantitative differences are evident and, in general, zirconia particle-induced pro-inflammatory gene expression was lower than that induced by titanium particles. In in vivo experiments, exposition to titanium or zirconia particles induced osteolysis in calvaria and hyperalgesia and edema in hind paw; however those induced by zirconia particles were significantly lower. There is a strong and positive correlation between the expressions of mRNA for TLR4, NF-κB, TNF-α, IL-1β and IL-6.

Significance

Collectively, our data suggest that zirconia ceramic particles are less bioactive than titanium particles.  相似文献   

14.
15.
Toll-like receptors (TLRs) have been found to be key elements in pathogen recognition by the host immune system. Dendritic cells (DCs) are crucial for both innate immune responses and initiation of acquired immunity. Here we focus on the potential involvement of TLR ligand interaction in DC maturation. TLR2 knockout mice and mice carrying a TLR4 mutation (C3H/HeJ) were investigated for DC maturation induced by peptidoglycan (PGN), lipopolysaccharide (LPS), or lipoteichoic acids (LTAs). All stimuli induced maturation of murine bone marrow-derived DCs in control mice. TLR2(-)/- mice lacked maturation upon stimulation with PGN, as assessed by expression of major histocompatibility complex class II, CD86, cytokine, and chemokine production, fluorescein isothiocyanate-dextran uptake, and mixed lymphocyte reactions, while being completely responsive to LPS. A similar lack of maturation was observed in C3H/HeJ mice upon stimulation with LPS. DC maturation induced by LTAs from two different types of bacteria was severely impaired in TLR2(-)/-, whereas C3H/HeJ mice responded to LTAs in a manner similar to wild-type mice. We demonstrate that DC maturation is induced by stimuli from Gram-positive microorganisms, such as PGN and LTA, with similar efficiency as by LPS. Finally, we provide evidence that TLR2 and TLR4 interaction with the appropriate ligand is essential for bacteria-induced maturation of DCs.  相似文献   

16.
17.
18.
Operative joint replacement to treat disabling joint conditions secondary to degenerative and inflammatory arthritides has become one of the most efficacious and cost-effective procedures to relieve pain and restore joint function. However, prosthetic implants are not built to last forever and osteolysis and aseptic loosening has been associated with prosthetic arthroplasties since their introduction. The functional life of a synthetic joint is influenced by many factors including the material of the implant, operation procedures and the surgeon involved, as well as patient-related factors. Although promising developments have been achieved in this field, more than 10% of all implants still have to undergo operative revision within 15 years after the initial operation. Failure due to sepsis, fractures and dislocations has become rare; premature loosening of implants on the other hand is becoming much more important. Prosthetic loosening without concurrent infection or trauma is called aseptic loosening. It is generally accepted that small particles ("wear debris") and activated macrophages play a key role in aseptic loosening. The pathophysiology of this condition, however, is still not very well characterized. In this article, we review the molecular mechanisms and signal pathways that were unravelled as responsible factors for loosening orthopaedic implants. Finally, we discuss possible novel strategies for future therapeutic approaches.  相似文献   

19.
How Location Governs Toll-Like Receptor Signaling   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of innate immune system receptors responsible for recognizing conserved pathogen-associated molecular patterns (PAMPs). PAMP binding to TLRs initiates intracellular signaling pathways that lead to the upregulation of a variety of costimulatory molecules and the synthesis and secretion of various cytokines and interferons by cells of the innate immune system. TLR-induced innate immune responses are a prerequisite for the generation of most adaptive immune responses, and in the case of B cells, TLRs directly regulate signaling from the antigen-specific B-cell receptor. The outcome of TLR signaling is determined, in part, by the cells in which they are expressed and by the selective use of signaling adaptors. Recent studies suggest that, in addition, both the ligand recognition by TLRs and the functional outcome of ligand binding are governed by the subcellular location of the TLRs and their signaling adaptors. In this review we describe what is known about the intracellular trafficking and compartmentalization of TLRs in innate system's dendritic cells and macrophages and in adaptive system's B cells, highlighting how location regulates TLR function.  相似文献   

20.
Microglia, the innate immune effector cells of the CNS parenchyma, express TLR that recognize conserved motifs of microorganisms referred to as pathogen-associated molecular patterns (PAMP). All TLRs identified to date, with the exception of TLR3, use a common adaptor protein, MyD88, to transduce activation signals. Recently, we reported that microglial activation in response to the Gram-positive bacterium Staphylococcus aureus was not completely attenuated following TLR2 ablation, suggesting the involvement of additional receptors. To assess the functional role of alternative TLRs in microglial responses to S. aureus and its cell wall product peptidoglycan as well as the Gram-negative PAMP LPS, we evaluated primary microglia from MyD88 knockout (KO) and wild-type mice. The induction of TNF-alpha, IL-12 p40, and MIP-2 (CXCL2) expression by S. aureus- and peptidoglycan-stimulated microglia was MyD88 dependent, as revealed by the complete inhibition of cytokine production in MyD88 KO cells. In addition, the expression of additional pattern recognition receptors, including TLR9, pentraxin-3, and lectin-like oxidized LDL receptor-1, was regulated, in part, via a MyD88-dependent manner as demonstrated by the attenuated expression of these receptors in MyD88 KO microglia. Microglial activation was only partially inhibited in LPS-stimulated MyD88 KO cells, suggesting the involvement of MyD88-independent pathways. Collectively, these findings reveal the complex mechanisms for microglia to respond to diverse bacterial pathogens, which occur via both MyD88-dependent and -independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号