首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An (Awassi × Merino) × Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep.  相似文献   

2.

Background

In sheep dairy production, total lactation performance, and length of lactation of lactation are of economic significance. A more persistent lactation has been associated with improved udder health. An extended lactation is defined by a longer period of milkability. This study is the first investigation to examine the presence of quantitative trait loci (QTL) for extended lactation and lactation persistency in sheep.

Methods

An (Awassi × Merino) × Merino single-sire backcross family with 172 ewes was used to map QTL for lactation persistency and extended lactation traits on a framework map of 189 loci across all autosomes. The Wood model was fitted to data from multiple lactations to estimate parameters of ovine lactation curves, and these estimates were used to derive measures of lactation persistency and extended lactation traits of milk, protein, fat, lactose, useful yield, and somatic cell score. These derived traits were subjected to QTL analyses using maximum likelihood estimation and regression analysis.

Results

Overall, one highly significant (LOD > 3.0), four significant (2.0 < LOD < 3.0) and five suggestive (1.7 < LOD < 2.0) QTL were detected across all traits in common by both mapping methods. One additional suggestive QTL was identified using maximum likelihood estimation, and four suggestive (0.01 < P < 0.05) and two significant (P < 0.01) QTL using the regression approach only. All detected QTL had effect sizes in the range of 0.48 to 0.64 SD, corresponding to QTL heritabilities of 3.1 to 8.9%. The comparison of the detected QTL with results in cattle showed conserved linkage regions. Most of the QTL identified for lactation persistency and extended lactation did not coincide. This suggests that persistency and extended lactation for the same as well as different milk yield and component traits are not controlled by the same genes.

Conclusion

This study identified ten novel QTL for lactation persistency and extended lactation in sheep, but results suggest that lactation persistency and extended lactation do not have a major gene in common. These results provide a basis for further validation in extended families and other breeds as well as targeting regions for genome-wide association mapping using high-density SNP arrays.  相似文献   

3.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   

4.
An F2 experimental population, developed from a broiler layer cross, was used in a genome scan of QTL for percentage of carcass, carcass parts, shank and head. Up to 649 F2 chickens from four paternal half‐sib families were genotyped with 128 genetic markers covering 22 linkage groups. Total map length was 2630 cM, covering approximately 63% of the genome. QTL interval mapping using regression methods was applied to line‐cross and half‐sib models. Under the line‐cross model, 12 genome‐wide significant QTL and 17 suggestive linkages for percentages of carcass parts, shank and head were mapped to 13 linkage groups (GGA1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 18 and 27). Under the paternal half‐sib model, six genome‐wide significant QTL and 18 suggestive linkages for percentages of carcass parts, shank and head were detected on nine chicken linkage groups (GGA1, 2, 3, 4, 5, 12, 14, 15 and 27), seven of which seemed to corroborate positions revealed by the previous model. Overall, three novel QTL of importance to the broiler industry were mapped (one significant for shank% on GGA3 and two suggestive for carcass and breast percentages on GGA14 and drums and thighs percentage on GGA15). One novel QTL for wings% was mapped to GGA3, six novel QTL (GGA1, 3, 7, 8, 9 and 27) and suggestive linkages (GGA2, 4, and 5) were mapped for head%, and suggestive linkages were identified for back% on GGA2, 11 and 12. In addition, many of the QTL mapped in this study confirmed QTL previously reported in other populations.  相似文献   

5.
The pursuits of white features and white fleeces free of pigmented fibre have been important selection objectives for many sheep breeds. The cause and inheritance of non‐white colour patterns in sheep has been studied since the early 19th century. Discovery of genetic causes, especially those which predispose pigmentation in white sheep, may lead to more accurate selection tools for improved apparel wool. This article describes an extended QTL study for 13 skin and fibre pigmentation traits in sheep. A total of 19 highly significant, 10 significant and seven suggestive QTL were identified in a QTL mapping experiment using an Awassi × Merino × Merino backcross sheep population. All QTL on chromosome 2 exceeded a LOD score of greater than 4 (range 4.4–30.1), giving very strong support for a major gene for pigmentation on this chromosome. Evidence of epistatic interactions was found for QTL for four traits on chromosomes 2 and 19. The ovine TYRP1 gene on OAR 2 was sequenced as a strong positional candidate gene. A highly significant association (< 0.01) of grandparental haplotypes across nine segregating SNP/microsatellite markers including one non‐synonymous SNP with pigmentation traits could be shown. Up to 47% of the observed variation in pigmentation was accounted for by models using TYRP1 haplotypes and 83% for models with interactions between two QTL probabilities, offering scope for marker‐assisted selection for these traits.  相似文献   

6.
A whole-genome scan for carcass traits [average daily gain during the pre-weaning, growth and finishing periods; birth weight; hot carcass weight and longissimus muscle area (LMA)] was performed on 328 F(2) progeny produced from Wagyu x Limousin-cross parents derived from eight founder Wagyu bulls. Nine significant (P 相似文献   

7.
A male sheep linkage map comprising 191 microsatellites was generated from a single family of 510 Awassi-Merino backcross progeny. Except for ovine chromosomes 1, 2, 10 and 17, all other chromosomes yielded a LOD score difference greater than 3.0 between the best and second-best map order. The map is on average 11% longer than the Sheep Linkage Map v4.7 male-specific map. This map was employed in quantitative trait loci (QTL) analyses on body-weight and growth-rate traits between birth and 98 weeks of age. A custom maximum likelihood program was developed to map QTL in half-sib families for non-inbred strains (QTL-MLE) and is freely available on request. The new analysis package offers the advantage of enabling QTL × fixed effect interactions to be included in the model. Fifty-four putative QTL were identified on nine chromosomes. Significant QTL with sex-specific effects (i.e. QTL × sex interaction) in the range of 0.4 to 0.7 SD were found on ovine chromosomes 1, 3, 6, 11, 21, 23, 24 and 26.  相似文献   

8.
Growth traits, such as body weight and carcass body length, directly affect productivity and economic efficiency in the livestock industry. We performed a genome‐wide linkage analysis to detect the quantitative trait loci (QTL) that affect body weight, growth curve parameters and carcass body length in an F2 intercross between Landrace and Korean native pigs. Eight phenotypes related to growth were measured in approximately 1000 F2 progeny. All experimental animals were subjected to genotypic analysis using 173 microsatellite markers located throughout the pig genome. The least squares regression approach was used to conduct the QTL analysis. For body weight traits, we mapped 16 genome‐wide significant QTL on SSC1, 3, 5, 6, 8, 9 and 12 as well as 22 suggestive QTL on SSC2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16 and 17. On SSC12, we identified a major QTL affecting body weight at 140 days of age that accounted for 4.3% of the phenotypic variance, which was the highest test statistic (F‐ratio = 45.6 under the additive model, nominal = 2.4 × 10?11) observed in this study. We also showed that there were significant QTL on SSC2, 5, 7, 8, 9 and 12 affecting carcass body length and growth curve parameters. Interestingly, the QTL on SSC2, 3, 5, 6, 8, 9, 10, 12 and 17 influencing the growth‐related traits showed an obvious trend for co‐localization. In conclusion, the identified QTL may play an important role in investigating the genetic structure underlying the phenotypic variation of growth in pigs.  相似文献   

9.
Results from a QTL experiment on growth and carcass traits in an experimental F2 cross between Iberian and Landrace pigs are reported. Phenotypic data for growth, length of carcass and muscle mass, fat deposition and carcass composition traits from 321 individuals corresponding to 58 families were recorded. Animals were genotyped for 92 markers covering the 18 porcine autosomes (SSC). The results from the genomic scan show genomewide significant QTL in SSC2 (longissimus muscle area and backfat thickness), SSC4 (length of carcass, backfat thickness, loin, shoulder and belly bacon weights) and SSC6 (longissimus muscle area, backfat thickness, loin, shoulder and belly bacon weights). Suggestive QTL were also found on SSC1, SSC5, SSC7, SSC8, SSC9, SSC13, SCC14, SSC16 and SSC17. A bidimensional genomic scan every 10 cM was performed to detect interaction between QTL. The joint action of two suggestive QTL in SSC2 and SSC17 led to a genome-wide significant effect in live weight. The results of the bidimensional genomic scan showed that the genetic architecture was mainly additive or the experimental set-up did not have enough power to detect epistatic interactions.  相似文献   

10.
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.  相似文献   

11.

Background

Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation.

Results

Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway.

Conclusions

A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the foundation for further investigation to identify causative mutations involved in each trait. Results reported here support previous findings suggesting conservation of key biological processes involved in growth and metabolism.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-837) contains supplementary material, which is available to authorized users.  相似文献   

12.
The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with 62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.99×10−6 to 2.73×10−5). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14 and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.  相似文献   

13.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

14.
Major objectives of the poultry industry are to increase meat production and to reduce carcass fatness, mainly abdominal fat. Information on growth performance and carcass composition are important for the selection of leaner meat chickens. To enhance our understanding of the genetic architecture underlying the chemical composition of chicken carcasses, an F2 population developed from a broiler × layer cross was used to map quantitative trait loci (QTL) affecting protein, fat, water and ash contents in chicken carcasses. Two genetic models were applied in the QTL analysis: the line‐cross and the half‐sib models, both using the regression interval mapping method. Six significant and five suggestive QTL were mapped in the line‐cross analysis, and four significant and six suggestive QTL were mapped in the half‐sib analysis. A total of eleven QTL were mapped for fat (ether extract), five for protein, four for ash and one for water contents in the carcass using both analyses. No study to date has reported QTL for carcass chemical composition in chickens. Some QTL mapped here for carcass fat content match, as expected, QTL regions previously associated with abdominal fat in the same or in different populations, and novel QTL for protein, ash and water contents in the carcass are presented here. The results described here also reinforce the need for fine mapping and to perform multi‐trait analyses to better understand the genetic architecture of these traits.  相似文献   

15.
TM-QTL is a quantitative trait locus (QTL) on ovine chromosome 18 (OAR18) known to affect loin muscling in Texel sheep. Previous work suggested that its mode of inheritance is consistent with paternal polar overdominance, but this has yet to be formally demonstrated. This study used purebred Texel sheep segregating for TM-QTL to confirm its presence in the chromosomal region in which it was first reported and to determine its pattern of inheritance. To do so, this study used the first available data from a Texel flock, which included homozygote TM-QTL carriers (TM/TM; n=34) in addition to homozygote non-carriers (+/+; n=40 and, heterozygote TM-QTL-carriers inheriting TM-QTL from their sire (TM/+; n=53) or their dam (+/TM; n=17). Phenotypes included a wide range of loin muscling, carcass composition and tissue distribution traits. The presence of a QTL affecting ultrasound muscle depth on OAR18 was confirmed with a paternal QTL effect ranging from +0.54 to +2.82 mm UMD (s.e. 0.37 to 0.57 mm) across the sires segregating for TM-QTL. Loin muscle width, depth and area, loin muscle volume and dissected M. longissimus lumborum weight were significantly greater for TM/+ than +/+ lambs (+2.9% to +7.9%; P<0.05). There was significant evidence that the effect of TM-QTL on the various loin muscling traits measured was paternally polar overdominant (P<0.05). In contrast, there was an additive effect of TM-QTL on both live weight at 20 weeks and carcass weight; TM/TM animals were significantly (P<0.05) heavier than +/+ (+11.1% and +7.3%, respectively) and +/TM animals (+11.9% and +11.7%, respectively), with TM/+ intermediate. Weights of the leg, saddle and shoulder region (corrected for carcass weight) were similar in the genotypic groups. There was a tendency for lambs inheriting TM-QTL from their sire to be less fat with slightly more muscle than non-carriers. For example, carcass muscle weight measured by live animal CT-scanning was 2.8% higher in TM/TM than +/+ lambs (P<0.05), carcass muscle weight measured by carcass CT-scanning was 1.36% higher in TM/+ than +/+ lambs (P<0.05), and weight of fat trimmed from the carcass cuts was significantly lower for TM/+ than +/+ lambs (−11.2%; P<0.05). No negative effects of TM-QTL on carcass traits were found. Optimal commercial use of TM-QTL within the sheep industry would require some consideration, due to the apparently different mode of action of the two main effects of TM-QTL (on growth and muscling).  相似文献   

16.
Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only.  相似文献   

17.
A previous analysis of an F2/Backcross Charolais × Holstein cross population identified the presence of a highly significant QTL on chromosome 6 (BTA6) affecting the proportion of bone in the carcass. Two closely linked QTL affected birth weight (BW) and body length at birth (BBL). In this report, the marker density around the QTL on BTA6 was increased, adding four additional microsatellite markers across the chromosome and 46 SNPs within the target QTL confidence interval. Of the SNPs, 26 were in positional candidate genes and the remaining 20 provided an even distribution of markers in the target QTL region. As a bone‐related trait, the sum of the bone weight for all the left fore‐ and hindquarter joints of the carcass was analysed. We also studied the BW and BBL. Analyses of the data substantially reduced the QTL confidence interval. No strong evidence was found that the QTL for the three traits studied are different, and we conclude that the results are consistent with a single pleiotropic QTL influencing the three traits, with the largest effects on the proportion of bone in the carcass. The analyses also suggest that none of the SNPs tested is the sole causative variant of the QTL effects. Specifically, the SNP in the NCAPG gene previously reported as a causal mutation for foetal growth and carcass traits in other cattle populations was excluded as the causal mutation for the QTL reported here. Polymorphisms located in other previously identified candidate genes including SPP1, ABCG2, IBSP, MEPE and PPARGC1A were also excluded. The results suggest that SNP51_BTA‐119876 is the polymorphism in strongest linkage disequilibrium with the causal mutation(s). Further research is required to identify the causal variant(s) associated with this bone‐related QTL.  相似文献   

18.
We herein report the results of a whole genome scan performed in a Piétrain × Large White intercross counting 525 offspring to map QTL influencing economically important growth and carcass traits. We report experiment-wide significant lod scores (> 4.6 for meatiness and fat deposition on chromosome SSC2, and for average daily gain and carcass length on chromosome SSC7. Additional suggestive lod scores (> 3.3) for fat deposition are reported on chromosomes SSC1, SSC7 and SSC13. A significant dominance deviation was found for the QTL on SSC1, while the hypothesis of an additive QTL could not be rejected for the QTL on SSC7 and SSC13. No evidence for imprinted QTL could be found for QTL other than the one previously reported on SSC2.  相似文献   

19.
Contrary to chicken and livestock mammals, duck genome has not been explored much. Nowadays a relatively small number of reports on molecular variability and mapping of loci in Peking ducks has been published. Therefore, the objective of this study was to detect single loci affecting body weight, carcass and meat traits in Peking ducks (Anas platyrhynchos). The study was based on an F2 cross between two parental lines A-55 and GL-30. Phenotypes of 387 birds from generation F2 including carcass and meat quality traits were collected. Linkage map, of the linkage group CAU1, consisting of 29 microsatellite markers was constructed. One highly significant (p?p?相似文献   

20.
Empirical confidence intervals (CIs) for the estimated quantitative trait locus (QTL) location from selective and non-selective non-parametric bootstrap resampling methods were compared for a genome scan involving an Angus x Brahman reciprocal fullsib backcross population. Genetic maps, based on 357 microsatellite markers, were constructed for 29 chromosomes using CRI-MAP V2.4. Twelve growth, carcass composition and beef quality traits (n = 527-602) were analysed to detect QTLs utilizing (composite) interval mapping approaches. CIs were investigated for 28 likelihood ratio test statistic (LRT) profiles for the one QTL per chromosome model. The CIs from the non-selective bootstrap method were largest (87 7 cM average or 79-2% coverage of test chromosomes). The Selective II procedure produced the smallest CI size (42.3 cM average). However, CI sizes from the Selective II procedure were more variable than those produced by the two LOD drop method. CI ranges from the Selective II procedure were also asymmetrical (relative to the most likely QTL position) due to the bias caused by the tendency for the estimated QTL position to be at a marker position in the bootstrap samples and due to monotonicity and asymmetry of the LRT curve in the original sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号