首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice were treated daily with [3H]MPTP (30 mg/kg, 1 uCi, s.c.) for 1, 3, and 10 days to determine the fate and localization of tritiated compounds. An untreated mouse was housed either in the same cage ("cage-mate control") or in an adjacent cage separated by mesh-wire ("near-neighbor control"). The radioactivity measured in blood, brain, liver, and remaining body of [3H]MPTP-treated mice was dependent on the total dose of the drug the animals received and did not vary with the type of tissue analyzed. Significant amounts of radioactivity were found in the tissues of the "cage-mate control" mice, but not of the "near-neighbor control" mice. The route of transmission appears to be through the urine, as the urine of [3H]MPTP-treated mice was highly radioactive after the drug injection. Only traces of radioactivity were found in their feces and there was no increase in the background radiation in the environment of the cages, indicating that the tritiated compounds were not exhaled. Proper disposal of urinary products of MPTP-treated animals is therefore necessary to reduce the risk of possible drug contamination in humans.  相似文献   

2.
The 3,4-dihydroxyphenylethylamine (DA, dopamine) uptake inhibitors GBR 13,069, amfonelic acid, WIN-35,065-2, WIN-35,428, nomifensine, mazindol, cocaine, McN-5908, McN-5847, and McN-5292 were effective in preventing [3H]DA and [3H]1-methyl-4-phenylpyridinium (MPP+) uptake in rat and mouse neostriatal tissue slices. These DA uptake inhibitors also were effective in attenuating the MPP+-induced release of [3H]DA in vitro. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration to mice (6 X 25 mg/kg i.p.) resulted in a large (70-80%) decrement in neostriatal DA. WIN-35,428 (5 mg/kg), GBR 13,069 (10 mg/kg), McN-5292 (5 mg/kg), McN-5908 (2 mg/kg), and amfonelic acid (2 mg/kg), when administered intraperitoneally 30 min prior to each MPTP injection, fully protected against MPTP-induced neostriatal damage. Other DA uptake inhibitors showed partial protection in vivo at the doses selected. Desmethylimipramine did not prevent [3H]MPP+ uptake or MPP+-induced release of [3H]DA in vitro, and did not protect against MPTP neurotoxicity in vivo. These results support the hypothesis put forth previously by others that the active uptake of MPP+ by dopaminergic neurons is necessary for toxicity.  相似文献   

3.
Day-6 pregnant rabbits were anesthetized and subjected to a mid-ventral laparotomy. [3H] Prostaglandin F2alpha) (PGF2alpha) [3H]PGE2, [14C]Urea or [14C]Sucrose were instilled into the uterine lumen via the uterotubal junction. The amounts instilled/uterine horn were respectively 3.7 +/- 0.3, 3.5 +/- 0.3, 5.7 +/- 1.3 and 2.7 +/- 1.6 muCi in 20mul of buffer. Animals were killed at 1, 2, 9, 19 or 21 h after radioactive instillation, and the amounts of radioactivity in blastocysts, uterine tissue, peritoneal cavity washings and urine evaluated by liquid scintillation spectrometry. A gradient of radioactivity was observed from the uterotubal junction to the cervical end of the uterus. Large amounts of [3H]PG were found in the injected horn and associated blastocysts with a considerable crossover to the non-injected horn, but little in the associated blastocysts. Much of the blastocysts associated- [3H]PG remained unmetabolized. Large amounts of metabolized [3 H] were found in urine. [14C]Urea was taken up by uterine tissue in the injected horn, but there was little cross over to the non-injected horn. Urea was also found in urine. Much of the [14C]Sucrose remained in the injected horn, and little was recovered from the urine. It was found that at 9 h, but not at 19 h, after [3 H]PG instillation, the PG was localized at the site of the blastocysts in the injected but not in the contralateral horn. Significantly more [3H]PGF2alpha than [3H]PGE2 was localized in this situation. [14C]Urea was not localized at the site of the blastocysts in urea injected horns. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We investigated in vivo the metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the brain and liver of rats 45 min after the systemic administration of 50 mg/kg of the neurotoxin. The metabolites present in brain and liver extracts were identified through multiple analytical methods by comparison to authentic compounds obtained from a number of chemical oxidations of MPTP. Our results indicate the presence of approximately 15% unreacted MPTP and relatively large amounts of both 1-methyl-4-phenylpyridinium (MPP+) and a mixture of three nonpolar lactams: 1-methyl-4-phenyl-5,6-dihydro-2(1H)-pyridinone, 1-methyl-4-phenyl-2(1H)-pyridinone, and a previously unreported metabolite 1-methyl-4-phenyl-2-piperidinone. Whereas MPP+ was more prevalent in the brain than in the liver, the lactam metabolites were more predominant in the liver. The amounts of the N-oxide and N-demethylated metabolites of MPTP were minimal.  相似文献   

5.
Alteration of neurotensin receptors in MPTP-treated mice.   总被引:1,自引:0,他引:1  
We examined the sequential changes in neurotensin receptors in the striatum and substantia nigra of mouse brains lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by receptor autoradiography, in comparison with the alterations in dopamine uptake sites. The mice received four intraperitoneal injections of MPTP (10 mg/kg) at 1-h intervals and then the brains were analyzed at 6 h and 1, 3, 7, and 21 days after the treatments. [3H]Neurotensin and [3H]mazindol were used to label neurotensin receptors and dopamine uptake sites, respectively. [3H]Neurotensin binding was significantly decreased in the striatum from 6 h to 21 days after MPTP treatment. In the substantia nigra, pars reticulata also showed a significant decrease in [3H]neurotensin binding from 3 to 21 days post-MPTP treatment. However, no significant change in [3H]neurotensin binding was observed in the pars compacta even after 21 days. On the other hand, [3H]mazindol binding was markedly decreased in the striatum and substantia nigra from 6 h to 21 days after MPTP treatment. These results indicate that neurotoxin MPTP can produce a severe decrease in neurotensin receptors and dopamine uptake sites in the striatum and substantia nigra of mice. Thus, our findings provide evidence that the dysfunction in neurotensin receptors may be involved in the degenerative processes causing Parkinson's disease.  相似文献   

6.
The metabolism and distribution of the parkinsonian syndrome inducing neurotoxin MPTP has been studied in non-human primates and mice housed in controlled environmental chambers. 14C6-MPTP was prepared and injected at concentrations normally employed for lesioning experiments (30 mg/kg in mice, 0.3 mg/kg in monkeys). All interior surfaces of the chambers which could be reached by animals or their excreta were contaminated with radiolabeled metabolites. Vapor born unmetabolized MPTP was negligible, although significant amounts of MPTP were found in the excreta of mice (less than or equal to 15% injected dose) and small amounts from rhesus monkeys (less than 2%). Procedures to minimize contact with animal fur, bedding and excreta should protect investigators working with MPTP over extended periods. Permanganate oxidation effectively detoxifies solutions of MPTP. MPTP, MPP+, common synthetic intermediates, and the products of MPTP's oxidation are not mutagenic as measured by a Salmonella-microsome assay.  相似文献   

7.
The plasma clearance, tissue distribution and metabolism of hyaluronic acid were studied with a high average molecular weight [3H]acetyl-labelled hyaluronic acid synthesized in synovial cell cultures. After intravenous injection in the rabbit the label disappeared from the plasma with a half-life of 2.5--4.5 min, which corresponds to a normal hyaluronic acid clearance of approx. 10 mg/day per kg body weight. Injection of unlabelled hyaluronic acid 15 min after the tracer failed to reverse its absorption. Clearance of labelled polymer was retarded by prior injection of excess unlabelled hyaluronic acid. The maximum clearance capacity was estimated in these circumstances to be about 30 mg/day per kg body wt. The injected material was concentrated in the liver and spleen. As much as 88% of the label was absorbed by the liver, where it was found almost entirely in non-parenchymal cells. Degradation was rapid and complete, since volatile material, presumably 3H2O, appeared in the plasma within 20 min. Undegraded [3H]hyaluronic acid, small labelled residues and 3H2O were detected in the liver, but there was little evidence of intermediate oligosaccharides. No metabolite except 3H2O was recognized in plasma or urine. Two-thirds of the radioactivity was retained in the body water 24 h later, and small amounts were found in liver lipids. Radioactivity did not decline in the spleen as rapidly as in the liver. The upper molecular weight limit for renal excretion was about 25 000. Renal excretion played a negligible part in clearance. It is concluded that hyaluronic acid is removed from the plasma and degraded quickly by an efficient extrarenal system with a high reserve capacity, sited mainly in the liver.  相似文献   

8.
A sensitive and specific method for the analysis of anisodamine and its metabolites in rat urine by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed. Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of anisodamine. After extraction procedure the pretreated samples were injected on a reversed-phase C18 column with mobile phase (0.2 ml/min) of methanol/0.01% triethylamine solution (adjusted to pH 3.5 with formic acid) (60:40, v/v) and detected by MS/MS. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MS(n) spectra with those of the parent drug. At least 11 metabolites (N-demethyl-6beta-hydroxytropine, 6beta-hydroxytropine, tropic acid, N-demethylanisodamine, hydroxyanisodamine, anisodamine N-oxide, hydroxyanisodamine N-oxide, glucuronide conjugated N-demethylanisodamine, sulfate conjugated and glucuronide conjugated anisodamine, sulfate conjugated hydroxyanisodamine) and the parent drug were found in rat urine after the administration of a single oral dose 25mg/kg of anisodamine. Hydroxyanisodamine, anisodamine N-oxide and the parent drug were detected in rat urine for up 95 h after ingestion of anisodamine.  相似文献   

9.
方亮  胡景鑫  刘国辉  邓广斐 《生物磁学》2009,(20):3845-3847,F0002
目的:研究1.甲基4-苯基-1,2,3,6-四氢吡啶(1-methy-4-phenyl-1,2,3,6-tetrahy-dropyridine,MPTP)帕金森病(PD)模型中小胶质细胞的激活情况,探讨低分子肝素对MPTP导致的小胶质细胞活化的抑制作用。方法:C57BL随机分成正常对照组、MPTP组、低分子肝素+MPTP组。MPTP组腹腔注射MPTP(30mg/kgx7d)同时腹部皮下注射生理盐水,低分子肝素+MPTP组在注射MPTP同时腹部皮下注射低分子肝素(1501U/kg·12hx7d)。各组于末次给药后予行为学测试,7d后免疫组化检测酪氨酸羟化酶(TyrosineHydroxylase,TH)阳性细胞。镀银染色观察小胶质细胞激活情况。结果:MPTP组较低分子肝素+MPTP组爬竿时间明显延长,并出现更多非随意动作。低分子肝素+MPTP组黑质部位TH阳性细胞数量高于MPTP组。MPTP组活化的小胶质细胞数量高于低分子肝素+MPTP组。结论:低分子肝素通过抑制小胶质细胞的激活减少MPTP帕金森小鼠多巴胺能神经元的损伤,提示低分子肝素可能有延缓PD进程的作用。  相似文献   

10.
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is known to cause a destruction of the dopaminergic nigrostriatal pathway in certain animal species including mice. MPTP and some structurally related analogs were tested in vitro for their capacity to inhibit the uptake of [3H]3,4-dihydroxyphenylethylamine-([3H]DA), [3H]5-hydroxytryptamine ([3H]5-HT), and [3H]gamma-aminobutyric acid [( 3H]GABA) in mouse neostriatal synaptosomal preparations. MPTP was a very potent inhibitor of [3H]5-HT uptake (IC50 value 0.14 microM), a moderate inhibitor of [3H]DA uptake (IC50 value 2.6 microM), and a very weak inhibitor of [3H]GABA uptake (no significant inhibition observed at 10 microM MPTP). In other experiments, MPTP caused some release of previously accumulated [3H]DA and [3H]5-HT, but in each case MPTP was considerably better as an uptake inhibitor than as a releasing agent. The 4-electron oxidation product of MPTP, i.e., 1-methyl-4-phenyl-pyridinium iodide (MPP+), was a very potent inhibitor of [3H]DA uptake (IC50 value 0.45 microM) and of [3H]5-HT uptake (IC50 value 0.78 microM) but MPP+ was a very weak inhibitor of [3H]GABA uptake. These data may have relevance to the neurotoxic actions of MPTP.  相似文献   

11.
A large pool of folate exists in the large intestine of humans. Preliminary evidence, primarily in vitro, suggests that this folate may be bioavailable. The purpose of this study was to test the hypothesis that supplemental folic acid and bacterially synthesized folate are absorbed across the large intestine of piglets. The pig was used as an animal model because it resembles the human in terms of folate absorption, at least in the small intestine. A tracer of [3H]-folic acid or [3H]-para-aminobenzoic acid ([3H]-PABA), a precursor of bacterially synthesized folate, was injected into the cecum of 11-day-old piglets. Feces and urine were collected for 3 days. Thereafter, piglets were killed, and livers and kidneys harvested. [3H]-Folate was isolated from biological samples by affinity chromatography using immobilized milk folate binding proteins and counted using a scintillation counter. In piglets injected with [3H]-folic acid, the feces, liver, urine and kidneys accounted for 82.1%, 12.3%, 3.9% and 1.7% of recovered [3H]-folate, respectively. In piglets injected with [3H]-PABA, the amount of recovered bacterially synthesized folate in the feces, liver and urine was 85.1%, 0.4% and 14.6%, respectively. Twenty-three percent and 13% of tritium were recovered in samples examined (liver, kidney, fecal and urine) from piglets injected with [3H]-folic acid and [3H]-PABA, respectively. Using our estimates of [3H]-folic acid absorption and the total and percent monoglutamyl folate content of piglet feces, we predict that at least 18% of the dietary folate requirement for the piglet could be met by folate absorption across the large intestine.  相似文献   

12.
[3H]MPP+ had lower Km and higher Vmax values for its accumulation in rat brain synaptosomes than did [3H]MPTP. The kinetic parameters favored the uptake of [3H]MPP+ in the striatum to that in hypothalamus, whereas they were equally favorable for the uptake of [3H]MPTP in both regions. Hypothalamic uptake of [3H]MPTP and [3H]MPP+ was inhibited by desipramine, imipramine, norepinephrine, and serotonin. Striatal uptake of [3H]MPP+ and [3H]MPTP was blocked by nomifensine and dopamine. These results support the concept that MPTP accumulates in serotonergic neurons where it is oxidized by monoamine oxidase B to MPP+, which is released and then is selectively accumulated in dopaminergic neurons via the dopamine uptake system.  相似文献   

13.
Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo   总被引:2,自引:0,他引:2  
Anephric, vitamin D-deficient male rats were injected with a physiologic dose of 25-hydroxy[26,27-3H]vitamin D3 (specific activity of 160 Ci/mmol), and 18-20 h later, intestine, bone, and serum were analyzed by high performance liquid chromatography for 1,25-dihydroxy-[26,27-3H]vitamin D3. Identical studies were carried out using sham-operated rats and rats with ligated ureters. No 1,25-dihydroxy[26,27-3H]vitamin D3 was detected in the tissues from anephric rats, while large amounts were detected in sham-operated and ureteric ligated controls. This result demonstrates that in the nonpregnant rat, 1,25-dihydroxyvitamin D3 is either not synthesized or is synthesized in vanishingly small amounts in bone and intestine in vivo, casting considerable doubt of the physiological importance of reports of in vitro synthesis of 1,25-dihydroxyvitamin D3 by cells in culture derived from bone and elsewhere.  相似文献   

14.
Guinea pigs were injected subcutaneously with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in maximal tolerated doses (8 mg/kg, once daily) for 10 or 15 days. No neurological effects were noted, other than sedation and hypotonia lasting a few hours after each injection, either in animals maintained on normal diet or in animals fed an ascorbate-deficient diet and rendered severely scorbutic. Subsequent chemical analyses of the striatum showed no evidence of lasting damage to nigrostriatal dopaminergic neurons in MPTP treated guinea pigs on normal diet, and minimal evidence of permanent damage to these neurons in scorbutic animals. MPTP was undetectable in the urine of MPTP-treated animals, although a metabolite, presumably 1-methyl-4-phenylpyridinium ion (MPP+) was regularly present in urine. The relative lack of neurotoxicity of MPTP in the guinea pig remains unexplained. This species clearly is not a suitable small animal for MPTP-induced parkinsonism.  相似文献   

15.
Scarr E  Parkin FM  Pavey G  Dean B 《Life sciences》2002,70(22):2699-2705
Antipsychotic drugs have been reported to increase the expression of subunits of the NMDA receptor at the level of mRNA but it is not clear whether such effects are apparent at the level of the radioligand binding or receptor protein. Therefore, we examined the effect of treatment of, and withdrawal from, haloperidol, chlorpromazine, olanzapine or clozapine on the binding of [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP ) to the open ion channel of the NMDA receptor in rat caudate-putamen, hippocampus and frontal cortex. [3H]TCP binding was not significantly different in the caudate-putamen, hippocampus and cortex after three months of treatment with any antipsychotic drug. There were significant decreases in [3H]TCP binding in rat caudate-putamen and cortex, but not hippocampus, one month after ceasing treatment. Decreases in the caudate-putamen were detected in rats previously treated with chlorpromazine (0.1 mg/kg/day) and clozapine (0.1 and 1.0 mg/kg/day). In the cortex, decreases in [3H]TCP binding were also detected in rats previously treated with olanzapine (0.1 mg/kg/day) for three months. These data suggest that changes in the NMDA receptor associated ion channels occur following antipsychotic drug withdrawal.  相似文献   

16.
[3H]Adrenaline ([3H]ADR, 40 nM) was accumulated by rat hypothalamic synaptosomes (P2) more rapidly and in significantly greater amounts than by similar preparations from cerebral cortex. There was no significant difference between these two tissues in the rate or amount of [3H]noradrenaline ([3H]NA, 40 nM) accumulation. Talusupram (10 microM), maximally inhibited the uptake of [3H]ADR into hypothalamic synaptosomes by 60%. Nomifensine further inhibited uptake by 14%. From these observations it was concluded that some [3H]ADR was accumulated into non adrenergic neuronal terminals. The effects of desipramine (DMI, 10 mg/kg/day and clorgyline (1 mg/kg/day) administration for 28 days on K+-evoked release of [3H]ADR was investigated using superfused hypothalamic synaptosomes. After both chronic antidepressant drug regimens, total [3H]ADR release (spontaneous + evoked) was significantly reduced. Evoked release of [3H]ADR (by KCl, 16 mM) was significantly reduced after the DMI but not the clorgyline regimens. Presynaptic alpha 2-adrenoceptor function in the hypothalamus was assessed during superfusion by measuring the reduction in K+-evoked release of [3H]ADR caused by clonidine (1 microM). The attenuating effects of clonidine on [3H]ADR release (42% in untreated controls and 36% after chronic clorgyline) was diminished (to 4%) after chronic DMI administration. Alpha 2 adrenoceptor numbers in the rat hypothalamus were not significantly changed after clorgyline or DMI administration, suggesting that the functional subsensitivity seen in synaptosomes after DMI, may not be related to alpha 2 adrenoceptor down regulation.  相似文献   

17.
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston , 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.  相似文献   

18.
The identification of biotransformation products of the new antihypertensive drug urapidil in mouse, rat, dog and man has been performed by means of high-performance liquid chromatographic and mass spectrometric techniques. In urine, three metabolites were found in addition to the unchanged drug. The para-hydroxylated product (1) (6-(3-[4-(o-methoxy-p-hydroxyphenyl)piperazinyl]-propylamino)-1, 3-dimethyl-uracil), the O-demethylated compound (2) (6-(3-[4-(o-hydroxyphenyl)piperazinyl]-propylamino)-1, 3-dimethyluracil) and the uracil-N-dealkylated compound (3) (6-(3-[4-(o-methoxyphenyl)piperazinyl]-propylamino)-1-methyluracil). In urine of dog, the metabolite with the N-oxide structure (5) was also identified, but only in trace amounts (6-(3-[4-(o-methoxyphenyl)piperazinyl-N-oxide]-propylamino)-1, 3-dimethyluracil).  相似文献   

19.
Abstract— A new method has been developed for the separation of histamine and its metabolites after intracisternal injection of [3H]histamine into the rat brain, involving solvent extraction and subsequent thin-layer chromatography. The effect of graded doses of the MAO inhibitors deprenil and pargyline, which at relatively low doses inhibit preferentially the B form (phenethylamine deaminating) of the enzyme, and clorgyline, which mainly inhibits the A form (serotonin, noradrenaline and dopamine deaminating) on the brain levels of intracisternally injected [3H]histamine and its labelled metabolites was studied and compared to MAO A and B activity as determined with the substrates serotonin and phenethylamine, respectively. In addition, the time-course of the effects of a single dose of pargyline (50mg/kg subcutaneously) was investigated. No [3H]imidazoleacetic acid could be detected in any of the control or treated animals. [3H]Histamine accounted for 9–12% of the total extracted radioactivity and this was not altered significantly by pretreatment with any of the MAO inhibitors up to high doses, at which both MAO A and B activities were completely inhibited. In the controls, 40–43% of the total extracted radioactivity was [3H]methylhistamine and 28–30% was [3H]methylimidazoleacetic acid. Deprenil and pargyline caused [3H]methylhistamine levels to increase in a dose-dependent manner up to about 150% of control levels and those of [3H]methylimida-zoleacetic acid to decrease concomitantly to about 10% of control levels. Clorgyline in doses up to 10 mg/kg subcutaneously (s.c.) had no effect on the levels of these two metabolites. The dose-response curves of the effects of deprenil and pargyline on [3H]methylimidazoleacetic acid levels were congruent with those of the MAOI effects on MAO B activity and not with those on MAO A activity. Pargyline (50 mg/kg s.c.) had a long lasting effect on the accumulation of [3H]methylhistamine and [3H]methylimidazoleacetic acid. Recovery occurred within 21 days, and the half-lives observed were 5.3 and 5.6 days, respectively. This compares well to the half-life for the recovery of MAO B activity reported earlier after the same dose of pargyline (5.5 days). These results suggest that methylhistamine is metabolized selectively by MAO B in rat brain. Moreover, the fact that clorgyline, at doses where phenethylamine deamination is already considerably inhibited, did not affect the deamination of methylhistamine, suggests that the latter is an even more selective substrate for MAO B than phenethylamine itself. Therefore, small doses of deprenil (0.3–3 mg/kg s.c.) or pargyline (1–3 mg/kg) can be used to influence histamine catabolism without interfering with catecholamine or serotonin deamination.  相似文献   

20.
Rats injected with N6-[Me-3H]trimethyl-lysine excrete in the urine five radioactively labelled metabolites. Two of these identified metabolites are carnitine and 4-trimethylammoniobutyrate. A third metabolite, identified as 5-trimethylammoniopentanoate, is not an intermediate in the biosynthesis of carnitine; the fourth and major metabolite, N2-acetyl-N6-trimethyl-lysine, is not a precursor of carnitine. The remaining metabolite (3-hydroxy-N6-trimethyl-lysine) is converted into trimethylammoniobutyrate and carnitine by rat liver slices and into trimethylammoniobutyrate by rat kidney slices. In rat liver and kidney-slice experiments, radioactivity from DL-N6-trimethyl-[1-14C]lysine and DL-N6-trimethyl-[2-14C]lysine was incorporated into N2-acetyl-N6-trimethyl-lysine and 3-hydroxy-N6-trimethyl-lysine, but not into trimethylammoniobutyrate or carnitine. A procedure was devised to purify milligram quantities of 3-hydroxy-N6-trimethyl-lysine from the urine of rats injected chronically with N6-trimethyl-lysine (100 mg/kg body wt. per day). The structure of 3-hydroxy-N6-trimethyl-lysine was confirmed chemically and by nuclear-magnetic-resonance spectrometry [Novak, Swift & Hoppel (1980) Biochem. J. 188, 521--527]. The sequence for carnitine biosynthesis in liver is: N6-trimethyl-lysine leads to 3-hydryxy-N6-trimethyl-lysine leads to leads to 4-trimethylammoniobutyrate leads to carnitine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号