首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
Summary This paper investigates the ability of neurons in the barn owl's (Tyto alba) inferior colliculus to sense brief appearances of interaural time difference (ITD), the main cue for azimuthal sound localization in this species. In the experiments, ITD-tuning was measured during presentation of a mask-probe-mask sequence. The probe consisted of a noise having a constant ITD, while the mask consisted of binaurally uncorrelated noise. Collicular neurons discriminated between the probe and masking noise by showing rapid changes from untuned to tuned and back to untuned responses.The curve describing the relation between probe duration and the degree of ITD-tuning resembled a leaky-integration process with a time constant of about 2 ms. Many neurons were ITD-tuned when probe duration was below 1 ms. These extremely short effective probe durations are interpreted as evidence for neuronal convergence within the pathway computing ITD. The minimal probe duration necessary for ITD-tuning was independent of the bandwidth of the neurons' frequency tuning and also of the best frequency of a neuron. Many narrowly tuned neurons having different best frequencies converge to form a broad-band neuron. To yield the short effective probe durations the convergence must occur in strong temporal synchronism.Abbreviations ICc central nucleus of the inferior colliculus; - ICx external nucleus of the inferior colliculus; - ITD interaural time difference - LP Likelihood parameter  相似文献   

2.
Barn owls (Tyto alba) have evolved several specializations in their auditory system to achieve the high sensory acuity required for prey capture, including superior processing of interaural time differences and phase coding in the auditory periphery. Here, we tested whether barn owls are capable of high temporal resolution that may be a prerequisite for the accuracy in binaural processing. Temporal resolution was measured psychoacoustically and demonstrated in temporal modulation transfer functions. Four barn owls were trained in an operant task with food reward to detect sinusoidal amplitude modulations within an 800-ms gated white-noise burst or 800-ms periods of modulation in continuous white noise (spectrum levels of -5 dB and 15 dB SPL). Within the range of tested amplitude modulation frequencies from 5 Hz to 1280 Hz, barn owls' detection thresholds were lowest at 10-20 Hz. This sensitivity corresponds to an intensity-difference limen of between 0.9 dB and 1.4 dB. For all conditions, temporal modulation transfer functions showed band-pass characteristics with a high-frequency cutoff in the range of 37 Hz to 92 Hz, corresponding to minimum integration times of 4.3 ms and 1.7 ms, respectively. In summary, these data indicate a temporal resolution in the owl's auditory system that is good, but not unusual, compared to other vertebrates.  相似文献   

3.
Summary Gap-detection thresholds of single units were determined from auditory forebrain neurons of the awake starling. Nine different response types were statistically defined from the discharge pattern to a 400 ms broadband noise stimulus. The gap stimuli consisted of two broadband noise bursts which were separated by a gap ranging from 0.4 to 204.8 ms duration. The median minimumdetectable gap for 121 out of 145 units that had a significant threshold 204.8ms was 12.8 ms; 20% of the neurons showed thresholds between 0.4 and 3.2 ms. The neurons of the nine response types differed significantly in their minimum-detectable gaps; neurons with phasic-tonic and phasic excitation exhibited the best (i.e. shortest) minimum-detectable gaps. The neurons of the three different recording areas (field L, NCM and HV) were significantly different in their minimumdetectable gaps; field L neurons showed the best temporal resolution for gaps in broadband noise. Gap-detection thresholds are compared with psychophysical thresholds determined with the same stimuli and the relevance of forebrain units for temporal resolution is discussed.Abbreviations CS control stimulus - HV hyperstriatum ventrale - HVc hyperstriatum ventrale pars caudalis - NB noise burst - NCM neostriatum caudale pars medialis - NS noise stimulus - SGS standard gap series - TW time window  相似文献   

4.
The natural acoustical environment contains many reflective surfaces that give rise to echoes, complicating the task of sound localization and identification. The barn owl (Tyto alba), as a nocturnal predator, relies heavily on its auditory system for tracking and capturing prey in this highly echoic environment. The external nucleus of the owl's inferior colliculus (ICx) contains a retina-like map of space composed of space-specific auditory neurons that have spatially limited receptive fields. We recorded extracellularly from individual space-specific neurons in an attempt to understand the pattern of activity across the ICx in response to a brief direct sound and a simulated echo. Space-specific neurons responded strongly to the direct sound, but their response to a simulated echo was suppressed, typically, if the echo arrived within 5 ms or less of the direct sound. Thus we expect there to be little or no representation within the ICx of echoes arriving within such short delays.Behavioral tests using the owl's natural tendency to turn their head toward a sound source suggested that owls, like their space-specific neurons, similarly localize only the first of two brief sounds. Naive, untrained owls were presented with a pair of sounds in rapid succession from two horizontally-separated speakers. With interstimulus delays of less than 10 ms, the owl consistently turned its head toward the leading speaker. Longer delays elicited head turns to either speaker with approximately equal frequency and in some cases to both speakers sequentially.Abbreviations IC inferior colliculus - ICx external nucleus of the inferior colliculus - ITD interaural time difference - ISI interstimulus interval - LS left speaker - RS right speaker - CS centering speaker - RF receptive field  相似文献   

5.
The authors studied fused auditory image (FAI) movement trajectories under conditions of direct nonsimultaneous masking. This movement was created by a gradual change in a dichotically presented series of clicks with interaural differences in stimulation from 0 to ±700 s or from ±700 to 0 s. Binaurally presented transmissions of wide-band noise served as maskers. The location and length of the trajectories were evaluated without a masker and with five values of the time lag between the signal beginning and masker end. When the test signal duration was 200 ms, the length of the trajectories was 33–44° without a masker. In the first test group, this trajectory lay close to the median line of the head without a masker (irrespective of the movement direction) and moved away from it under masking conditions. When the FAI moved from the median line towards the right or left ear, the initial part of the trajectory was masked; when the movement direction was opposite, the final part was masked. In the second group, the trajectories were located near the ears when the FAI moved from either ear and shifted towards the median line as a result of masking. When the movement direction was opposite, they were close to the median line and shifted towards the ear under masking conditions. When the FAI moved along all trajectories, their initial parts were masked.  相似文献   

6.
Summary Two big brown bats (Eptesicus fuscus) were trained to report the presence or absence of a virtual sonar target. The bats' sensitivity to transient masking was investigated by adding 5 ms pulses of white noise delayed from 0 to 16 ms relative to the target echo. When signal and masker occurred simultaneously, the bats required a signal energy to noise spectrum level ratio of 35 dB for 50% probability of detection. When the masker was delayed by 2 ms or more there was no significant masking and echo energy could be reduced by 30 dB for the same probability of detection. The average duration of the most energetic sonar signal of each trial was measured to be 1.7 ms and 2.4 ms for the two bats, but a simple relation between detection performance and pulse duration was not found.In a different experiment the masking noise pulses coincided with the echo, and the duration of the masker was varied from 2 to 37.5 ms. The duration of the masker had little or no effect on the probability of detection.The findings are consistent with an aural integration time constant of about 2 ms, which is comparable to the duration of the cries. This is an order of magnitude less than found in backward masking experiments with humans and may be an adaptation to the special constraints of echolocation. The short time of sensitivity to masking may indicate that the broad band clicks of arctiid moths produced as a countermeasure to bat predation are unlikely to function by masking the echo of the moth.Abbreviations SPL sound pressure level - SD standard deviation - SE standard error - BW bandwidth  相似文献   

7.
We examined factors that affect spatial receptive fields of single units in the central nucleus of the inferior colliculus of Eptesicus fuscus. Pure tones, frequency- or amplitude-modulated sounds, or noise bursts were presented in the free-field, and responses were recorded extracellularly. For 58 neurons that were tested over a 30 dB range of sound levels, 7 (12%) exhibited a change of less than 10° in the center point and medial border of their receptive field. For 28 neurons that were tested with more than one stimulus type, 5 (18%) exhibited a change of less than 10° in the center point and medial border of their receptive field.The azimuthal response ranges of 19 neurons were measured in the presence of a continuous broadband noise presented from a second loudspeaker set at different fixed azimuthal positions. For 3 neurons driven by a contralateral stimulus only, the effect of the noise was simple masking. For 11 neurons driven by sound at either side, 8 were unaffected by the noise and 1 showed a simple masking effect. For the remaining 2, as well as for 5 neurons that were excited by contralateral sound and inhibited by ipsilateral sound, the peak of the azimuthal response range shifted toward the direction of the noise.Abbreviations E/E excitation at either ear - I/E inhibition at the ipsilateral ear, excitation at the contralateral ear - O/E no effect from the ipsilateral ear, excitation at the contralateral ear - FM downward frequency modulation - FM upward frequency modulation - IC inferior colliculus - ICC central nucleus of the inferior colliculus - ILD interaural level difference - ITD interaural time difference - PT pure tone - SAM sinusoidally amplitude modulated sounds - SFM sinusoidally frequency modulated sounds  相似文献   

8.
Quantification of the time course and amplitude of endplate currents (EPC) was made with respect to dispersion of quanta secretion and to changes in the exponential decay of miniature endplate currents (mepc). The relationship between RPC amplitude and mepc follows a double-exponential curve with 1= 0.3 ms and 2 = 6 ms. If the amplitude of fully synchronised EPC is taken as 100%, then the loss of EPC amplitude is already 42% with physiological parameters of dispersion (the half-rise and decay constant of distribution of secretion probability = 0.5 ms, mepc =1 ms). This loss is even more substantial if secretion is more dispersed or miniature endplate currents decay faster. Correspondence to: F. Vyskocil  相似文献   

9.
We are constantly exposed to a mixture of sounds of which only few are important to consider. In order to improve detectability and to segregate important sounds from less important sounds, the auditory system uses different aspects of natural sound sources. Among these are (a) its specific location and (b) synchronous envelope fluctuations in different frequency regions. Such a comodulation of different frequency bands facilitates the detection of tones in noise, a phenomenon known as comodulation masking release (CMR). Physiological as well as psychoacoustical studies usually investigate only one of these strategies to segregate sounds. Here we present psychoacoustical data on CMR for various virtual locations of the signal by varying its interaural phase difference (IPD). The results indicate that the masking release in conditions with binaural (interaural phase differences) and across-frequency (synchronous envelope fluctuations, i.e. comodulation) cues present is equal to the sum of the masking releases for each of the cues separately. Data and model predictions with a simplified model of the auditory system indicate an independent and serial processing of binaural cues and monaural across-frequency cues, maximizing the benefits from the envelope comparison across frequency and the comparison of fine structure across ears.
Bastian EppEmail:
  相似文献   

10.
The effect of release from masking in unit activity of the inferior colliculus was studied in anesthetized cats. When series of cophasic and antiphasic clicks with varied interaural delay were used as stimuli, sensitivity to changes in the interaural phase shift within a narrow band of the spectrum of the signal close to the characteristic frequency was discovered in neurons with low characteristic frequencies (up to 2.6 kHz). The masking effect with cophasic and antiphasic noise was found to depend on the phase sensitivity of the neurons. The neurophysiological mechanisms of the release from masking effect are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 463–468, July–August, 1985.  相似文献   

11.
A behavioural gap detection paradigm was used to determine the temporal resolution for song patterns by female crickets, Gryllus bimaculatus. For stimuli with a modulation depth of 100% the critical gap duration was 6–8 ms. A reduction of the modulation depth of gaps to 50% led either to an increase or a decrease of the critical gap duration. In the latter case, the critical gap duration dropped to 3–4 ms indicating a higher sensitivity of auditory processing. The response curve for variation of pulse period was not limited by temporal resolution. However, the reduced response to stimuli with a high duty cycle, and thus short pause durations, was in accordance with the limits of temporal resolution. The critical duration of masking pulses inserted into pauses was 4–6 ms. An analysis of the songs of males revealed that gaps (5.8 ms) and masking pulses (6.9 ms) were at detectable time scales for the auditory pathway of female crickets. However, most of the observed temporal variation of song patterns was tolerated by females. Critical cues such as pulse period and pulse duty cycle provided little basis for inter-individual selection by females.  相似文献   

12.
The temporal parameters of the perception of radially moving sound sources partly masked with broadband internalized noise at an intensity of 40, 46, or 52 dB above the hearing threshold have been studied. The threshold of sound duration necessary for identifying the direction of movement of the sound source (75% correct answers) increases from 135 ms in silence to 285 ms at all intensities of continuous noise studied. The minimum duration of the stimulus beginning with which a subsequent increase in duration does not increase the number of correct responses is the same (385 ms) under all conditions of stimulus presentation. Broadband noise of any intensity increases the time of response to stimuli in the range of durations studied. At a noise of 52 dB, which is close to the threshold of full masking, the reaction time is not increased significantly compared to its estimation at a noise of 46 dB. The minimum duration of the stimulus has proved to be the stablest temporal parameter of the perception of movement of a sound source. Changes in the temporal parameters of sound perception at noise levels close to the threshold of full masking are discussed.  相似文献   

13.
Small songbirds have a difficult analysis problem: their head is small compared to the wavelengths of sounds used for communication providing only small interaural time and level differences. Klump and Larsen (1992) measured the physical binaural cues in the European starling (Sturnus vulgaris) that allow the comparison of acoustical cues and perception. We determined the starling’s minimum audible angle (MAA) in an operant Go/NoGo procedure for different spectral and temporal stimulus conditions. The MAA for broadband noise with closed-loop localization reached 17°, while the starling’s MAA for open-loop localization of broadband noise reached 29°. No substantial difference between open-loop and closed-loop localization was found in 2 kHz pure tones. The closed-loop MAA improved from 26° to 19° with an increase in pure tone frequency from 1 to 4 kHz. This finding is in line with the physical cues available. While the starlings can only make use of interaural time difference cues at lower frequencies (e.g., 1 and 2 kHz), additional interaural level difference cues become available at higher frequencies (e.g., 4 kHz or higher, Klump and Larsen 1992). An improvement of the starling’s MAA with an increasing number of standard stimulus presentations prior to the test stimulus has important implications for determining relative (MAA) localization thresholds.  相似文献   

14.
The effect of binaural decorrelation on the processing of interaural level difference cues in the barn owl (Tyto alba) was examined behaviorally and electrophysiologically. The electrophysiology experiment measured the effect of variations in binaural correlation on the first stage of interaural level difference encoding in the central nervous system. The responses of single neurons in the posterior part of the ventral nucleus of the lateral lemniscus were recorded to stimulation with binaurally correlated and binaurally uncorrelated noise. No significant differences in interaural level difference sensitivity were found between conditions. Neurons in the posterior part of the ventral nucleus of the lateral lemniscus encode the interaural level difference of binaurally correlated and binaurally uncorrelated noise with equal accuracy and precision. This nucleus therefore supplies higher auditory centers with an undegraded interaural level difference signal for sound stimuli that lack a coherent interaural time difference. The behavioral experiment measured auditory saccades in response to interaural level differences presented in binaurally correlated and binaurally uncorrelated noise. The precision and accuracy of sound localization based on interaural level difference was reduced but not eliminated for binaurally uncorrelated signals. The observation that barn owls continue to vary auditory saccades with the interaural level difference of binaurally uncorrelated stimuli suggests that neurons that drive head saccades can be activated by incomplete auditory spatial information.  相似文献   

15.
Temporal coding in the moth ear was inferred from the response of the auditory receptor to acoustic stimuli with different temporal characteristics.
1.  Determinations of the threshold with different stimulus pulse durations showed that the moth ear behaves as an energy detector with a maximum time constant (the integration time) of 25 ms. Pulse durations beyond this value did not result in decreased thresholds (Fig. 1).
2.  The synchronization to amplitude modulations was determined by stimulating the moth ear with amplitude modulated (AM) tones (carrier frequency: 40 kHz) and AM white noise presented as 450 ms pulses separated by pauses of similar length. The modulation depth was constant (100%) whereas the modulation frequency,f m, was varied. The maximumf m which the auditory receptors could follow was 200 Hz (P<0.05) (figs.=" 2,=" 3,=" 4).=">
3.  The relatively broad tuning of the only receptor which was functional at the relevant stimulus intensities suggested that AM detection could only be based on temporal cues. This was confirmed by the results showing the same degree of synchronization independent of carrier.
4.  A minimum time constant for the receptor was also determined by interrupting a 400 ms noise pulse by a gap (Figs. 5, 6). The threshold for gap detection of the moth ear was ca. 2 ms on a 2.5% significance level (one sided test).
5.  The temporal acuity reported here seems to be fine enough to explain the temporal resolution suggested by behavioral results from other insect species. The results are discussed in relation to acoustic communication in insects as well as in relation to temporal resolution in vertebrates.
  相似文献   

16.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. Loud free running artificial pulses, simulating the bat's natural long-CF/FM echolocation sounds, interfered with the ability of the bat to discriminate target distance. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 70 ms. A brief (2.0 ms) CF signal 2–68 ms before an isolated FM signal was as effective as a continuous CF component of the same duration. When coupled with the bat's own emissions, a 2 ms FM sweep alone was effective in interfering when it came 42 to 69 ms after the onset of the bat's pulse. The coupled FM artificial pulses did not interfere when they began during the bat's own emissions.It appears that the onset of the CF component activates a gating mechanism that establishes a time window during which FM component signals must occur for proper neural processing. A comparison with a similar gating mechanism in Noctillo albiventris, which emits short-CF/FM echolocation sounds, reveals that the temporal parameters of the time window of the gating mechanism are species specific and specified by the temporal structure of the echolocation sound pattern of each species.Abbreviations FM frequency modulated - CF constant frequency  相似文献   

17.
Advertisement calls, auditory tuning, and larynx and ear morphology were examined in 3 neotropical frogs, Hyla microcephala, H. phlebodes and H. ebraccata, H. microcephala has the highest call dominant frequency (6.068 kHz) and basilar papilla tuning (5.36 kHz). H. phlebodes and H. ebraccata calls have lower dominant frequencies (3.832 and 3.197 kHz respectively) and basilar papilla tuning (2.79 and 2.56 kHz). The primary call notes of H. ebraccata are longer (181.6 ms) than those of H. microcephala (95.5 ms) or H. phlebodes (87.3 ms). Morphometric analysis suggests that temporal call features differ as laryngeal musculature changes, in the process changing the overall size of the larynx. The spectral aspects of the call differ as head size, and hence the size of its resonating and radiating structures, changes, modifying the dominant frequency of calls by accentuating their higher harmonics when head size decreases. Decreasing head size decreases the size of the middle and inner ear chambers, changing the mechanical tuning of the ear in the same direction as the change in dominant frequency. These changes result in divergent spectral-temporal characteristics of both the sending and receiving portions of the acoustic communication system underlying social behavior in these frogs.Abbreviations AP amphibian papilla - BEF best excitatory frequency - BP basilar papilla - dB SPL decibels sound pressure level re:20 N/m2  相似文献   

18.
Bi-coordinate sound localization by the barn owl   总被引:6,自引:3,他引:3  
1. Binaurally time-shifted and intensity-unbalanced noise, delivered through earphones, induced owls to respond with a head-orienting behavior similar to that which occurs to free field auditory stimuli. 2. Owls derived the azimuthal and elevational coordinates of a sound from a combination of interaural time difference (ITD) and interaural intensity difference (IID). 3. IID and ITD each contained information about the azimuth and elevation of the signal. Thus, IID and ITD formed a coordinate system in which the axes were non-orthogonal. 4. ITD was a strong determinant of azimuth, and IID was a strong determinant of elevation, of elicited head turn.  相似文献   

19.

Background

The auditory continuity illusion or the perceptual restoration of a target sound briefly interrupted by an extraneous sound has been shown to depend on masking. However, little is known about factors other than masking.

Methodology/Principal Findings

We examined whether a sequence of flanking transient sounds affects the apparent continuity of a target tone alternated with a bandpass noise at regular intervals. The flanking sounds significantly increased the limit of perceiving apparent continuity in terms of the maximum target level at a fixed noise level, irrespective of the frequency separation between the target and flanking sounds: the flanking sounds enhanced the continuity illusion. This effect was dependent on the temporal relationship between the flanking sounds and noise bursts.

Conclusions/Significance

The spectrotemporal characteristics of the enhancement effect suggest that a mechanism to compensate for exogenous attentional distraction may contribute to the continuity illusion.  相似文献   

20.
Summary Auditory brain stem responses (ABR) were recorded from the head surface of non-anesthetized and non-relaxed bottle-nosed dolphins, Tursiops truncatus. The region of best ABR recording was shown to be located 6–9 cm caudal to the blowhole. The threshold values were about 1 mPa for noise bursts and –3 dB re 1 mPa for tone bursts of the optimal frequency (80 kHz). The maximum frequency at which ABR could be evoked was 140 kHz. The duration of temporal summation reached 0.5 ms at intensities near the threshold and decreased with an increase in intensity. When the stimuli were paired clicks of the same intensity, the time to complete recovery from the second response was about 5 ms, while that to its 50% recovery was 0.7 ms. When the conditioning click exceeded the testing one in intensity, prolongation of the recovery period was observed. A 40-dB intensity difference led to an approximately 10-fold prolongation of this period.Abbreviations ABR auditory brain stem response - EP evoked potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号