首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computations for genome scans need to adapt to the increasing use of dense diallelic markers as well as of full-chromosome multipoint linkage analysis with either diallelic or multiallelic markers. Whereas suitable exact-computation tools are available for use with small pedigrees, equivalent exact computation for larger pedigrees remains infeasible. Markov chain-Monte Carlo (MCMC)-based methods currently provide the only computationally practical option. To date, no systematic comparison of the performance of MCMC-based programs is available, nor have these programs been systematically evaluated for use with dense diallelic markers. Using simulated data, we evaluate the performance of two MCMC-based linkage-analysis programs--lm_markers from the MORGAN package and SimWalk2--under a variety of analysis conditions. Pedigrees consisted of 14, 52, or 98 individuals in 3, 5, or 6 generations, respectively, with increasing amounts of missing data in larger pedigrees. One hundred replicates of markers and trait data were simulated on a 100-cM chromosome, with up to 10 multiallelic and up to 200 diallelic markers used simultaneously for computation of multipoint LOD scores. Exact computation was available for comparison in most situations, and comparison with a perfectly informative marker or interprogram comparison was available in the remaining situations. Our results confirm the accuracy of both programs in multipoint analysis with multiallelic markers on pedigrees of varied sizes and missing-data patterns, but there are some computational differences. In contrast, for large numbers of dense diallelic markers, only the lm_markers program was able to provide accurate results within a computationally practical time. Thus, programs in the MORGAN package are the first available to provide a computationally practical option for accurate linkage analyses in genome scans with both large numbers of diallelic markers and large pedigrees.  相似文献   

2.
Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance.  相似文献   

3.
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel's laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele-error model, we find that detection rates are 51%-77% for multiallelic markers and 13%-75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree-rather than genotyping-errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping.  相似文献   

4.
An easy-to-use, simulation-based power calculator (ASP) for linkage analysis using sib-pair designs (concordant or discordant) has been developed and made publicly available via the Internet. The program employs a diallelic model for the trait locus, at which parental/offspring genotypes are simulated, assuming Hardy-Weinberg equilibrium in the parental generation. Genotypes at a linked multiallelic marker locus are simulated conditional upon the inheritance pattern at the trait locus, allowing for recombination. Marker genotypes are tested for non-Mendelian identity-by-descent sharing, using both an unrestricted and a restricted likelihood ratio test, the latter representing an extension of the "mean test" from fully to partially informative families. The power of user-defined datasets is estimated by the number of simulations giving significant results at varying type I error levels.  相似文献   

5.
Detecting the association between genetic markers and complex diseases can be a critical first step toward identification of the genetic basis of disease. Misleading associations can be avoided by choosing as controls the parents of diseased cases, but the availability of parents often limits this design to early-onset disease. Alternatively, sib controls offer a valid design. A general multivariate score statistic is presented, to detect the association between a multiallelic genetic marker locus and affection status; this general approach is applicable to designs that use parents as controls, sibs as controls, or even unrelated controls whose genotypes do not fit Hardy-Weinberg proportions or that pool any combination of these different designs. The benefit of this multivariate score statistic is that it will tend to be the most powerful method when multiple marker alleles are associated with affection status. To plan these types of studies, we present methods to compute sample size and power, allowing for varying sibship sizes, ascertainment criteria, and genetic models of risk. The results indicate that sib controls have less power than parental controls and that the power of sib controls can be increased by increasing either the number of affected sibs per sibship or the number of unaffected control sibs. The sample-size results indicate that the use of sib controls to test for associations, by use of either a single-marker locus or a genomewide screen, will be feasible for markers that have a dominant effect and for common alleles having a recessive effect. The results presented will be useful for investigators planning studies using sibs as controls.  相似文献   

6.
A model of density-dependent selection in a Mendelian single-locus population was analyzed in the case where the fitnesses of genotypic forms are exponential functions of the population size. Analytical and numerical studies of the model were performed for a diallelic locus, and parametric regions were established for different dynamic behaviors of the model. The diallelic model of density-dependent selection was generalized to a multiallelic locus; the results of its analysis are described.  相似文献   

7.
With the widespread availability of SNP genotype data, there is great interest in analyzing pedigree haplotype data. Intermarker linkage disequilibrium for microsatellite markers is usually low due to their physical distance; however, for dense maps of SNP markers, there can be strong linkage disequilibrium between marker loci. Linkage analysis (parametric and nonparametric) and family-based association studies are currently being carried out using dense maps of SNP marker loci. Monte Carlo methods are often used for both linkage and association studies; however, to date there are no programs available which can generate haplotype and/or genotype data consisting of a large number of loci for pedigree structures. SimPed is a program that quickly generates haplotype and/or genotype data for pedigrees of virtually any size and complexity. Marker data either in linkage disequilibrium or equilibrium can be generated for greater than 20,000 diallelic or multiallelic marker loci. Haplotypes and/or genotypes are generated for pedigree structures using specified genetic map distances and haplotype and/or allele frequencies. The simulated data generated by SimPed is useful for a variety of purposes, including evaluating methods that estimate haplotype frequencies for pedigree data, evaluating type I error due to intermarker linkage disequilibrium and estimating empirical p values for linkage and family-based association studies.  相似文献   

8.
Nielsen DM  Ehm MG  Zaykin DV  Weir BS 《Genetics》2004,168(2):1029-1040
There has been much recent interest in describing the patterns of linkage disequilibrium (LD) along a chromosome. Most empirical studies that have examined this issue have concentrated on LD between collections of pairs of markers and have not considered the joint effect of a group of markers beyond these pairwise connections. Here, we examine many different patterns of LD defined by both pairwise and joint multilocus LD terms. The LD patterns we considered were chosen in part by examining those seen in real data. We examine how changes in these patterns affect the power to detect association when performing single-marker and haplotype-based case-control tests, including a novel haplotype test based on contrasting LD between affected and unaffected individuals. Through our studies we find that differences in power between single-marker tests and haplotype-based tests in general do not appear to be large. Where moderate to high levels of multilocus LD exist, haplotype tests tend to be more powerful. Single-marker tests tend to prevail when pairwise LD is high. For moderate pairwise values and weak multilocus LD, either testing strategy may come out ahead, although it is also quite likely that neither has much power.  相似文献   

9.
王彪  邱丽娟 《植物学报》2002,19(1):44-48
微卫星DNA是重复单位少于6个核苷酸的简单重复序列。在大部分真核细胞的基因组中有着广泛分布,呈孟德尔式遗传。以此为基础发展起来的SSR标记是一种共显性分子标记,遗传多态性丰富。本文着重介绍近年来SSR技术应用在大豆遗传图谱构建、基因研究、品种鉴定和分子标记辅助育种等方面取得的进展,并初步预测该方法在大豆研究中的发展方向。  相似文献   

10.
大豆SSR技术研究进展   总被引:18,自引:0,他引:18  
微卫星DNA是重复单位少于 6个核苷酸的简单重复序列。在大部分真核细胞的基因组中有着广泛分布 ,呈孟德尔式遗传。以此为基础发展起来的SSR标记是一种共显性分子标记 ,遗传多态性丰富。本文着重介绍近年来SSR技术应用在大豆遗传图谱构建、基因研究、品种鉴定和分子标记辅助育种等方面取得的进展 ,并初步预测该方法在大豆研究中的发展方向。  相似文献   

11.
Zhdanova OL  Frisman EIa 《Genetika》2005,41(11):1575-1584
A model of density-dependent selection in a Mendelian single-locus population was analyzed in the case where the fitnesses of genotypic forms are exponential functions of the population size. Analytical and numerical studies of the model were performed for a diallelic locus, and parametric regions were established for different dynamic behaviors of the model. The diallelic model of density-dependent selection was generalized to a multiallelic locus; the results of its analysis are described.  相似文献   

12.
Linkage disequilibrium in domestic sheep   总被引:15,自引:0,他引:15  
McRae AF  McEwan JC  Dodds KG  Wilson T  Crawford AM  Slate J 《Genetics》2002,160(3):1113-1122
The last decade has seen a dramatic increase in the number of livestock QTL mapping studies. The next challenge awaiting livestock geneticists is to determine the actual genes responsible for variation of economically important traits. With the advent of high density single nucleotide polymorphism (SNP) maps, it may be possible to fine map genes by exploiting linkage disequilibrium between genes of interest and adjacent markers. However, the extent of linkage disequilibrium (LD) is generally unknown for livestock populations. In this article microsatellite genotype data are used to assess the extent of LD in two populations of domestic sheep. High levels of LD were found to extend for tens of centimorgans and declined as a function of marker distance. However, LD was also frequently observed between unlinked markers. The prospects for LD mapping in livestock appear encouraging provided that type I error can be minimized. Properties of the multiallelic LD coefficient D' were also explored. D' was found to be significantly related to marker heterozygosity, although the relationship did not appear to unduly influence the overall conclusions. Of potentially greater concern was the observation that D' may be skewed when rare alleles are present. It is recommended that the statistical significance of LD is used in conjunction with coefficients such as D' to determine the true extent of LD.  相似文献   

13.
One way to perform linkage-disequilibrium (LD) mapping of genetic traits is to use single markers. Since dense marker maps-such as single-nucleotide polymorphism and high-resolution microsatellite maps-are available, it is natural and practical to generalize single-marker LD mapping to high-resolution haplotype or multiple-marker LD mapping. This article investigates high-resolution LD-mapping methods, for complex diseases, based on haplotype maps or microsatellite marker maps. The objective is to explore test statistics that combine information from haplotype blocks or multiple markers. Based on two coding methods, genotype coding and haplotype coding, Hotelling's T2 statistics TG and TH are proposed to test the association between a disease locus and two haplotype blocks or two markers. The validity of the two T2 statistics is proved by theoretical calculations. A statistic TC, an extension of the traditional chi2 method of comparing haplotype frequencies, is introduced by simply adding the chi2 test statistics of the two haplotype blocks together. The merit of the three methods is explored by calculation and comparison of power and of type I errors. In the presence of LD between the two blocks, the type I error of TC is higher than that of TH and TG, since TC ignores the correlation between the two blocks. For each of the three statistics, the power of using two haplotype blocks is higher than that of using only one haplotype block. By power comparison, we notice that TC has higher power than that of TH, and TH has higher power than that of TG. In the absence of LD between the two blocks, the power of TC is similar to that of TH and higher than that of TG. Hence, we advocate use of TH in the data analysis. In the presence of LD between the two blocks, TH takes into account the correlation between the two haplotype blocks and has a lower type I error and higher power than TG. Besides, the feasibility of the methods is shown by sample-size calculation.  相似文献   

14.
Multilocus association mapping using variable-length Markov chains   总被引:1,自引:0,他引:1       下载免费PDF全文
I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium (LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information. I present analyses of two published data sets that show that this approach can have better power than single-marker tests or sliding-window haplotypic tests.  相似文献   

15.
Fan R  Jung J  Jin L 《Genetics》2006,172(1):663-686
In this article, population-based regression models are proposed for high-resolution linkage disequilibrium mapping of quantitative trait loci (QTL). Two regression models, the "genotype effect model" and the "additive effect model," are proposed to model the association between the markers and the trait locus. The marker can be either diallelic or multiallelic. If only one marker is used, the method is similar to a classical setting by Nielsen and Weir, and the additive effect model is equivalent to the haplotype trend regression (HTR) method by Zaykin et al. If two/multiple marker data with phase ambiguity are used in the analysis, the proposed models can be used to analyze the data directly. By analytical formulas, we show that the genotype effect model can be used to model the additive and dominance effects simultaneously; the additive effect model takes care of the additive effect only. On the basis of the two models, F-test statistics are proposed to test association between the QTL and markers. By a simulation study, we show that the two models have reasonable type I error rates for a data set of moderate sample size. The noncentrality parameter approximations of F-test statistics are derived to make power calculation and comparison. By a simulation study, it is found that the noncentrality parameter approximations of F-test statistics work very well. Using the noncentrality parameter approximations, we compare the power of the two models with that of the HTR. In addition, a simulation study is performed to make a comparison on the basis of the haplotype frequencies of 10 SNPs of angiotensin-1 converting enzyme (ACE) genes.  相似文献   

16.
Historically, most methods for detecting linkage disequilibrium were designed for use with diallelic marker loci, for which the analysis is straightforward. With the advent of polymorphic markers with many alleles, the normal approach to their analysis has been either to extend the methodology for two-allele systems (leading to an increase in df and to a corresponding loss of power) or to select the allele believed to be associated and then collapse the other alleles, reducing, in a biased way, the locus to a diallelic system. I propose a likelihood-based approach to testing for linkage disequilibrium, an approach that becomes more conservative as the number of alleles increases, and as the number of markers considered jointly increases in a multipoint test for linkage disequilibrium, while maintaining high power. Properties of this method for detecting associations and fine mapping the location of disease traits are investigated. It is found to be, in general, more powerful than conventional methods, and it provides a tractable framework for the fine mapping of new disease loci. Application to the cystic fibrosis data of Kerem et al, is included to illustrate the method.  相似文献   

17.
The identification of candidate genes for significant traits is crucial. In this study, we developed and tested effective and systematic methods based on linkage disequilibrium (LD) for the identification of candidate regions for genes with Mendelian inheritance and those associated with complex traits. Our approach entailed the combination of primary screening using pooled DNA samples based on ΔTAC, secondary screening using an individual typing method and tertiary screening using a permutation test based on the differences in the haplotype frequency between two neighbouring microsatellites. This series of methods was evaluated using horse coat colour traits (chestnut/non-chestnut) as a simple Mendelian inheritance model. In addition, the methods were evaluated using a complex trait model constructed by mixing samples from chestnut and non-chestnut horses. Using both models, the methods could detect the expected regions for the horse coat colour trait. The results revealed that LD extends up to several centimorgans in horses, indicating that whole-genome LD screening in horses could be performed systematically and efficiently by combining the above-mentioned methods. Since genetic maps based on microsatellites have been constructed for many other species, the approaches present here could have wide applicability.  相似文献   

18.
Genome-wide linkage analysis using microsatellite markers has been successful in the identification of numerous Mendelian and complex disease loci. The recent availability of high-density single-nucleotide polymorphism (SNP) maps provides a potentially more powerful option. Using the simulated and Collaborative Study on the Genetics of Alcoholism (COGA) datasets from the Genetics Analysis Workshop 14 (GAW14), we examined how altering the density of SNP marker sets impacted the overall information content, the power to detect trait loci, and the number of false positive results. For the simulated data we used SNP maps with density of 0.3 cM, 1 cM, 2 cM, and 3 cM. For the COGA data we combined the marker sets from Illumina and Affymetrix to create a map with average density of 0.25 cM and then, using a sub-sample of these markers, created maps with density of 0.3 cM, 0.6 cM, 1 cM, 2 cM, and 3 cM. For each marker set, multipoint linkage analysis using MERLIN was performed for both dominant and recessive traits derived from marker loci. Our results showed that information content increased with increased map density. For the homogeneous, completely penetrant traits we created, there was only a modest difference in ability to detect trait loci. Additionally, as map density increased there was only a slight increase in the number of false positive results when there was linkage disequilibrium (LD) between markers. The presence of LD between markers may have led to an increased number of false positive regions but no clear relationship between regions of high LD and locations of false positive linkage signals was observed.  相似文献   

19.
Moen T  Fjalestad KT  Munck H  Gomez-Raya L 《Genetics》2004,167(2):851-858
A multistage testing strategy to detect QTL for resistance to infectious salmon anemia (ISA) in Atlantic salmon is proposed. First, genotyping of amplified fragment length polymorphisms (AFLP) and a transmission disequilibrium test (TDT) were carried out using dead offspring from a disease resistance challenge test. Second, AFLP genotyping among survivors followed by a Mendelian segregation test was performed. Third, within-family survival analyses using all offspring were developed and applied to significant TDT markers with Mendelian inheritance. Maximum-likelihood methodology was developed for TDT with dominant markers to exploit linkage disequilibrium within families. The strategy was tested with two full-sib families of Atlantic salmon sired by the same male and consisting of 79 offspring in total. All dead offspring from the two families were typed for 64 primer combinations, resulting in 340 scored markers. There were 26 significant results out of 401 TDTs using dead offspring. In the second stage, only 17 marker families showed Mendelian segregation and were tested in survival analysis. A permutation test was performed for all survival analyses to compute experimentwise P-values. Two markers, aaccac356 and agccta150, were significant at P < 0.05 when accounting for multiple testing in the survival analyses. The proposed strategy might be more powerful than current mapping strategies because it reduces the number of tests to be performed in the last testing stage.  相似文献   

20.
Recent studies report a surprisingly high degree of marker-to-marker linkage disequilibrium (LD) in ruminant livestock populations. This has important implications for QTL mapping and marker-assisted selection. This study evaluated LD between microsatellite markers in a number of breeding populations of layer chickens using the standardized chi-square (chi(2')) measure. The results show appreciable LD among markers separated by up to 5 cM, decreasing rapidly with increased separation between markers. The LD within 5 cM was strongly conserved across generations and differed among chromosomal regions. Using marker-to-marker LD as an indication for marker-QTL LD, a genome scan of markers spaced 2 cM apart at moderate power would have good chances of uncovering most QTL segregating in these populations. However, of markers showing significant trait associations, only 57% are expected to be within 5 cM of the responsible QTL, and the remainder will be up to 20 cM away. Thus, high-resolution LD mapping of QTL will require dense marker genotyping across the region of interest to allow for interval mapping of the QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号