首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the voltage-sensitive sodium channel activator batrachotoxin (BTX) on the binding properties of muscarinic receptors were studied in homogenates of rat atria. Also studied were the effects of muscarinic ligands on the binding of tritium-labeled batrachotoxin ([3H]BTX) to the same preparation. BTX (1 microM), which induces an open state in sodium channels, enhanced the affinity of binding of several agonists to the muscarinic receptors. Analysis of the data indicated that the effect of BTX was to increase the affinity of the agonists toward the high-affinity sites. Binding of antagonists was not affected by BTX. At higher concentrations of toxin, the density of the high affinity muscarinic sites was also affected. The binding of agonists (but not of antagonists) to muscarinic receptors in turn enhanced the specific binding of [3H]BTX to sodium channels. These effects on the muscarinic receptors and on the sodium channels were inhibited in the presence of Gpp(NH)p at concentrations lower than those bringing about conversion of binding sites from the high affinity to the low affinity conformation. On the basis of these findings we suggest that the opening of sodium channels and the binding of agonists to muscarinic receptors in rat atrial membranes are coupled events which are mediated by guanine nucleotide-binding protein(s). Such a hypothesis is consistent with previously proposed models for signal transduction in the membrane.  相似文献   

2.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

3.
Isolated, partially purified or enriched rat gastric muscosal parietal cells were shown to respond to carbamycholine (EC50 = 2 μM) and other muscarinic cholinergic agonists as measured by an increased accumulation of 14C-aminopyrine, an indirect measure of acid secretion. The secretory response to carbamylcholine was shown to be inhibited stereoselectively and reversibly by nanomolar concentrations of muscarinic cholinergic antagonists. Non-muscarinic antagonists, including cimetidine, were either ineffective or very weak inhibitors. The affinity constants calculated for cholinergic antagonist inhibition of 14C-aminopyrine accumulation induced by carbamylcholine were similar to those previously calculated from direct binding studies on purified parietal cell particulate fractions using 3H-QNB (1). These studies support the existence of specific parietal cell muscarinic cholinergic receptors with which the natural secretagogue acetylcholine interacts to regulate gastric acid secretion.  相似文献   

4.
Guo ZD  Suga H  Okamura M  Takeda S  Haga T 《Life sciences》2001,68(19-20):2319-2327
We have prepared fusion proteins of muscarinic M1-M5 receptors with alpha subunits of G proteins Gi1, Gi2, Gs, G11, G16 and chimera of G protein alpha subunits using the bacurovirus-Sf9 expression system. In fusion proteins such as M2-Gi1alpha and M4-Gi1alpha, agonist caused the decrease in the apparent affinity for GDP of these fusion proteins and then the increase in [35S]GTPgammaS binding in the presence of GDP. Thus we could use the membrane preparation expressing these fusion proteins as a tool to screen agonists and antagonists. On the other hand, the effect of agonists to decrease the apparent affinity for GDP was not clearly observed in fusion proteins of Gq/G11-coupled receptors such as M1-G11alpha, M3-G11alpha, and M5-G11alpha. The effect of agonists could be observed for fusion proteins with G16alpha of muscarinic M1, M2 and adrenergic beta2 receptors, but the extent of the effect was much less than that for fusion proteins with Gi1alpha of Gi/Go-coupled receptors. Fusion proteins of M1 receptors with Gi1alpha or chimera of G16alpha and Gi2alpha were also not effective in detecting the action of agonists.  相似文献   

5.
The ligand binding subunit of the D2 dopamine receptor (Mr approximately equal to 94,000) can be visualized by autoradiography following photoaffinity labeling with [125I]N-azidophenethylspiperone and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following removal of sialic acids with the exoglycosidase, neuraminidase, [125I]N-azidophenethylspiperone photoincorporated into a protein of Mr = 54,000 with the appropriate pharmacological profile for D2 receptors. The desialylated D2 receptor bound dopaminergic agonists with high affinity and was capable of coupling to a functional G-protein as indexed by: 1) pertussis-toxin mediated [32P]ADP ribosylation of proteins of Mr = 42,000 and 39,000, and 2) the conversion of the agonist high affinity form of D2 receptors to one displaying low affinity for agonists in the presence of guanine nucleotides. These data suggest that sialic acid residues do not contribute significantly to the ligand binding characteristics of D2 receptors despite the large change produced in the estimated molecular mass of the binding subunit.  相似文献   

6.
The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-[3H]piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. In contrast, the major differences between the kinetic binding parameters of agonists and antagonists to the low affinity agonist binding sites are in the association rate constants, which were 2-5 orders of magnitude lower for agonists. This demonstrates that there are basic differences in the interactions of agonists with the low and high affinity sites. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.  相似文献   

7.
The affinity for muscarinic ligands of a preparation of muscarinic acetylcholine receptors purified from porcine brain was examined by means of competitive binding of [3H]quinuclidinylbenzylate and unlabeled ligands, followed by computer-assisted nonlinear regression analysis. The displacements by antagonists fitted a single-site model. In contrast, the displacements by agonists did not fit the single-site model and could be explained by assuming two populations of binding sites. The proportion of the sites with high affinity for muscarinic agonists (H-sites) ranged from 25 to 35% of the total number of sites. GTP had no effect on the displacements by agonists, a finding indicating that H-sites did not result from interaction between receptors and GTP-binding proteins. In the presence of dithiothreitol, the affinity for muscarinic ligands decreased. The largest effects were observed on the affinity for pirenzepine and that of H-sites for carbachol. Preincubation of the preparation with 5,5'-dithiobis(2-nitrobenzoic acid) resulted in an increase in the proportion of H-sites to 75% of the total number of binding sites. The results of sucrose density gradient centrifugation of the preparation indicated apparent heterogeneity as to molecular size of the receptors, but this heterogeneity did not correlate with that of the affinity for agonists. In addition, the receptors were detected as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparation, regardless of the presence or absence of disulfide-reducing reagents. These results suggest that the redox state of thiol groups in the receptor molecules is relevant to their affinities for ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Muscarinic receptors coupled to phosphoinositide hydrolysis (PI) are present in guinea pig bladder and colon. Compared to rat cerebral cortex, an extensively studied muscarinic/PI turnover system, all agonists were more potent and efficacious in both bladder and colon. The "M1-selective antagonists", pirenzepine and dicyclomine, were much more potent (Ki = 1-5 nM) and selective (300 to 500-fold) at both rat and guinea pig brain and guinea pig colon receptors, compared to PI-coupled receptors in guinea pig bladder. In contrast, "M2-selective antagonists", AF-DX 116 and HHSiD, were 2-6 fold more potent in bladder than in brain, while HHSiD was very potent in the colon (50 times more potent than in brain). These results suggest a pharmacological heterogeneity of PI-linked muscarinic receptors. If muscarinic receptors with a low affinity for pirenzepine are defined as M2, these results show that the guinea pig bladder contains PI-linked M2 muscarinic receptors, whereas the guinea pig colon contains PI-linked M1 receptors.  相似文献   

9.
Muscarinic receptor stimulation inhibits cyclic AMP formation in rat atria but not in retina. We compared the properties of the muscarinic receptors in rat atrial and retinal membranes using the antagonist [3H]quinuclidinyl benzilate. In both atria and retina there is a single binding site for antagonists, while agonists appear to interact at two classes of binding sites. Muscarinic receptors in atria and retina have the same apparent affinities for several antagonists and for a series of muscarinic agonists. In both tissues N-ethylmaleimide decreases agonist affinity for the high-affinity binding sites. Muscarinic receptors in atria and retina differ, however, in several properties relating to the proportions of high- and low-affinity agonist sites. First, guanine nucleotides markedly increase the proportion of low-affinity binding sites in atria, but not in retina. Second, for all agonists there are fewer high-affinity binding sites in retina. Third, the "partial agonist" pilocarpine appears to interact with two classes of binding sites in atria, but with only a single class of sites in retina. Our data suggest that muscarinic receptors that inhibit cyclic AMP formation and those that do not share common properties that determine receptor affinity for agonists and classic antagonists. The differences between these receptors are manifest, however, in the effects of guanine nucleotides and the ability of agonists, especially those of low efficacy, to affect the proportion of high- and low-affinity sites and to effect a biological response.  相似文献   

10.
A binding assay has been developed to characterize beta-adrenergic receptors on intact L6 muscle cells. The affinity of beta-adrenergic receptors for the radioligand iodohydroxybenzylpindolol (IHYP) was the same in membrane preparations and in intact cells when determined by either equilibrium binding or kinetic analysis. The number of specific IHYP binding sites per cell was approximately the same on intact cells as on membranes. The pharmacological properties of antagonists indicated that the receptors on intact cells were identical to those on membranes. However, the beta-adrenergic receptors on intact cells had a 100-400 fold lower affinity at equilibrium for the agonist isoproterenol than did beta-adrenergic receptors on membranes. This low affinity of the receptor for agonists as measured by inhibition of radioligand binding in intact cells has also been observed in C6 (2) and S49 (3) cells. Our results suggest that beta receptors on intact cells after a 1 minute incubation was similar to the KD value for isoproterenol measured in membranes at equilibrium in the presence of GTP. After 1-2 minutes of exposure to a low concentration of agonist, binding of IHYP was no longer inhibited. These results suggest that agonists rapidly convert the beta receptors on intact cells to a state which has a low affinity for agonists. The affinity of the receptor for antagonists did not change during the incubation.  相似文献   

11.
The presynaptic muscarinic autoreceptor of Torpedo marmorata electric organ has been characterised by radioligand binding studies using the subtype-selective antagonists pirenzepine, (+)-telenzepine, methoctramine, and AF-DX 116. The presynaptic receptor had relatively high affinity for the M1 antagonists pirenzepine and (+)-telenzepine (Ki = 35 and 7 nM, respectively) and lower affinities for the M2 antagonists AF-DX 116 and methoctramine (Ki = 311 and 277 nM, respectively). Comparison of these binding data with those from an M2 receptor (rat heart membranes) assayed under identical conditions and with data in the recent literature suggests that the Torpedo muscarinic autoreceptor has a pharmacology most similar to the M1 pharmacological subtype of muscarinic acetylcholine receptor.  相似文献   

12.
We have expressed a M(2)-Galpha(i1) fusion protein in insect cells, in which the G protein alpha(i1) subunit was fused with a mutant of the muscarinic receptor M(2) subtype without glycosylation sites and the central part of the third intracellular loop. The M(2)-Galpha(i1) fusion protein showed GTP-sensitive, high-affinity agonist binding. Displacement curves by GDP of [(35)S]GTPgammaS binding shifted to the right in the presence of muscarinic agonists. The extent of the shift was greater for full agonists (120-150 fold) than for partial agonists (25-35 fold), and virtually no shift was observed for antagonists. The affinity for GDP decreased with increasing MgCl(2) concentration in the presence of an agonist but was not affected by MgCl(2) in the presence of an antagonist. These results indicate that the apparent affinity for GDP of the M(2)-Galpha(i1) fusion protein bound to a ligand represents the efficacy of the given ligand, and that Mg(2+) is required for the agonist-bound M(2) to interact with Galpha(i1), reducing its affinity for GDP. We propose that the agonist-M(2)-Galpha(i1) complex represents the transition state for the GDP-GTP exchange reaction catalyzed by agonist-bound receptors, and that the complex has different affinities for GDP depending on the species of the ligand bound to M(2) receptors.  相似文献   

13.
Treating membranes from rat heart with phospholipase C (phosphatidylcholine choline-phosphohydrolase) fromClostridium perfringens increased the affinity of muscarinic acetylcholine receptors (M2) for the agonists carbachol and oxotremorine. The affinity for antagonists was not affected. Phospholipase C activity, i.e., the cleavage of polar heads of membrane phospholipids, led to the disappearance of the guanine nucleotide-dependent rightward shift of the isotherm for agonist binding. The treatment of tracheal smooth muscle with phospholipase C led to a decrease in the maximum contractile effect of muscarinic (M2) stimulation with no modification of the agonist EC50, i.e., to the uncoupling of the stimulation-contraction process. These results demonstrate that when phospholipid polar heads are hydrolysed by phospholipase C, M2 receptors are uncoupled from G proteins, which enhances their affinity for agonists but prevents information transfer.  相似文献   

14.
The muscarinic acetylcholine receptor was solubilized, in a sensitive form for GTP and Na+, from bovine cerebral cortex using a zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate. The solubilized muscarinic receptor displayed characteristics as follows: (1) high affinity to nanomolar concentration of Z-[3H]quinuclidinyl benzilate; (2) muscarinic agonists and antagonists had similar inhibitory potencies as on the membrane-bound receptor; (3) without Na+, GTP did not significantly alter the binding affinity of muscarinic agonists and antagonists; (4) GTP in the presence of Na+, selectively decreased the affinity of muscarinic agonists, carbamylcholine and oxotremoline, but not the antagonist binding affinity; (5) Na+ in the absence or presence of GTP, reduced both muscarinic agonist and antagonist affinities.  相似文献   

15.
Muscarinic toxin 7 (MT7) is a mamba venom protein antagonist with extremely high selectivity for the M1 muscarinic acetylcholine receptor. To map the sites for the interaction of MT7 with muscarinic receptors we have used chimeric M1:M3 receptors and site-directed mutagenesis of the M3 and M4 receptor subtypes. Two Glu residues in M1, one in extracellular loop 2 and one in extracellular loop 3, were found to be important for the high affinity binding of MT7. Substitution of the corresponding Lys residues in the M3 receptor with Glu converted the M3 mutant to an MT7 binding receptor, albeit with lower affinity compared with M1. A Phe --> Tyr substitution in extracellular loop 2 of M3 together with the 2 Glu mutations generated a receptor with an increased MT7 affinity (apparent Ki = 0.26 nM in a functional assay) compared with the M1 receptor (apparent Ki = 1.31 nM). The importance of the identified amino acid residues was confirmed with a mutated M4 receptor constructs. The results indicate that the high selectivity of MT7 for the M1 receptor depends on very few residues, thus providing good prospects for future design and synthesis of muscarinic receptor-selective ligands.  相似文献   

16.
SRIF receptors are membrane-bound glycoproteins. To structurally identify the carbohydrate components of SRIF receptors, solubilized rat brain SRIF receptors were subjected to lectin affinity chromatography. Solubilized SRIF receptors specifically bound to wheat germ agglutinin-lectin affinity columns but not to succinylated wheat germ agglutinin. This finding, as well as the ability of the solubilized receptor to interact with a Sambucus nigra L. lectin affinity column suggested that sialic acid residues are associated with SRIF receptors. The inability of the receptor to bind to concanavalin A, Dolichus biflorus agglutinin, Ulex europeaus I, and Jacalin lectin affinity columns suggests that high mannose, N-acetylgalactosamine, fucose, and O-linked carbohydrates are not associated with receptor. To investigate the functional role of the carbohydrate groups in brain SRIF receptors, specific sugars were selectively cleaved from SRIF receptors and the subsequent effect on the specific high affinity binding of the agonist [125I]MK 678 to SRIF receptors was determined. Treatment of the receptor with endoglycosidase D did not affect the specific binding of [125I] MK 678 to the solubilized SRIF receptors, consistent with the finding from lectin affinity chromatography that high mannose-type carbohydrate structures were not associated with SRIF receptors. Treatment of solubilized SRIF receptors with peptide-N-glycosidase F and endoglycosidases H and F reduced [125I]MK 678 binding to SRIF receptors indicating that either hybrid, or a combination of hybrid and complex N-linked carbohydrate structures, have a role in maintaining the receptor in a high affinity state for agonists. Treatment of solubilized SRIF receptors with neuraminidase from Vibrio cholera abolished high affinity agonist binding to the receptors, whereas treatment of the receptor with neuraminidase from Newcastle disease virus did not affect [125I]MK 678 binding to the receptor. These findings suggest that sialic acid residues in an alpha 2,6-configuration have a role in maintaining the SRIF receptor in a high affinity conformation for agonists. This is further indicated by studies on SRIF receptors in the pituitary tumor cell line, AtT-20. Treatment of AtT-20 cells in culture with neuraminidase (V. cholera) greatly reduces high affinity [125I] MK 678 binding sites, but did not alter the maximal ability of SRIF to inhibit forskolin-stimulated cAMP accumulation in intact AtT-20 cells. This finding suggests that the desialylated SRIF receptor is functionally active and remains coupled to GTP-binding proteins, but exhibits a reduced affinity for agonists. Treatment of AtT-20 cell membranes with neuraminidase from V. cholera was also able to greatly reduce the affinity of SRIF receptors for [125I]MK 678.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   

19.
A series of muscarinic agonists, straight chained, branched, cyclic alkyl and aromatic derivatives of the oxime 1 (demox) was designed with the aim of investigating their activity on muscarinic receptor subtypes. Effects on M1 receptor were assessed functionally by a microphysiometer apparatus, while M2, M3, and M4 receptor potency and affinity were studied on isolated preparations of guinea pig heart, ileum, and lung, respectively. The results suggest that the substitution of a hydrogen with a long side-chain or bulky group generally induces a decrease in potency at M1 and M3 subtypes, while a general increase in this parameter is obtained at M2 subtype. Among the agonists 2-18, compound 4 behaves as a full agonist with a preference for M3 subtype. Moreover, compound 12 is inactive at M1 and M4 receptors while it displays a full agonist activity at M2 and M3 subtypes. Since demox displays a variable response on cardiac M2 receptors regulating heart force, an in-depth inquiry of the functional behaviour of this compound was carried out at M2 receptors. In presence of 10(-11) and 10(-10) M demox, the binding of [3H]-NMS was increased by approximately 30% as a consequence of an increase of the association of [3H]-NMS to membranes; this effect was not observed in presence of a higher concentration of [3H]-NMS. Higher concentrations of demox decreased the binding of [3H]-NMS to heart atrial membranes but significantly retarded the dissociation of this radioligand. Our results suggest that demox may interact with orthosteric and allosteric sites of atrial M2 muscarinic receptor.  相似文献   

20.
Chemical modification of amino acid residues was used to probe the ligand recognition site of A1 adenosine receptors from rat brain membranes. The effect of treatment with group-specific reagents on agonist and antagonist radioligand binding was investigated. The histidine-specific reagent diethylpyrocarbonate (DEP) induced a loss of binding of the agonist R-N6-[3H] phenylisopropyladenosine ([3H]PIA), which could be prevented in part by agonists, but not by antagonists. DEP treatment induced also a loss of binding of the antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX). Antagonists protected A1 receptors from this inactivation while agonists did not. This result provided evidence for the existence of at least 2 different histidine residues involved in ligand binding. Consistent with a modification of the binding site, DEP did not alter the affinity of [3H]DPCPX, but reduced receptor number. From the selective protection of [3H] PIA and [3H]DPCPX binding from inactivation, it is concluded that agonists and antagonists occupy different domains at the binding site. Sulfhydryl modifying reagents did not influence antagonist binding, but inhibited agonist binding. This effect is explained by modification of the inhibitory guanine nucleotide binding protein. Pyridoxal 5-phosphate inactivated both [3H]PIA and [3H]DPCPX binding, but the receptors could not be protected from inactivation by ligands. Therefore, no amino group seems to be located at the ligand binding site. In addition, it was shown that no further amino acids with polar side chains are present. The absence of hydrophilic amino acids from the recognition site of the receptor apart from histidine suggests an explanation for the lack of hydrophilic ligands with high affinity for A1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号