首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acylneuraminate pyruvate-lyase gene from Clostridium perfringens was sequenced and found to be most similar to the lyase gene from Haemophilus influenzae. Both the recombinant clostridial enzyme and the native enzyme from pig kidney were purified in larger amounts and characterized. The properties of the porcine lyase are similar to the microbial ones. However, the much higher degree of similarity in comparison to the microbial enzymes that was found between porcine lyase peptides and two putative mammalian lyase sequences show that the latter form an own group apart from the microbial lyases. Actual models of the acylneuraminate pyruvate-lyase reaction are discussed.  相似文献   

2.
3.
4.
H Abe  T Endo  K Yamamoto  T Obinata 《Biochemistry》1990,29(32):7420-7425
Two actin-regulatory proteins of 19 and 20 kDa are involved in the regulation of actin assembly in developing chicken skeletal muscle. They are homologous with actin depolymerizing factor (ADF) and cofilin, a pH-dependent actin-modulating protein, which were originally discovered in chicken and mammalian brain, respectively. In this study, full-length cDNA clones were isolated by screening a lambda gt11 cDNA library constructed from poly(A+) RNA of embryonic chicken skeletal muscle with the antibodies specific for each protein, and their complete sequences were determined. The chicken cofilin cDNA encoded a protein of 166 amino acids, the sequence of which had over 80% identity with that of porcine brain cofilin. The amino acid sequence of the ADF was 165 amino acids and showed about 70% identity with either chicken or mammalian cofilin, in spite of the fact that ADF and cofilin are functionally distinct. Like chicken and mammalian cofilin, ADF contained a sequence similar to the nuclear transport signal sequence of SV40 large T antigen. ADF and cofilin shared a hexapeptide identical with the amino-terminal sequence of tropomyosin as well as the regions homologous to other actin-regulatory proteins, including depactin, gelsolin, and profilin. The overall nucleotide sequences and Southern blot analysis of genomic DNA, however, indicated that the two proteins were derived from different genes.  相似文献   

5.
6.
A gene (alyPEEC) encoding an alginate lyase of Pseudoalteromonas elyakovii IAM 14594 was cloned using the plasmid vector pUC118 and expressed in Escherichia coli. Sequencing of a 3.0kb fragment revealed a 1,197bp open reading frame encoding 398 amino acid residues. The calculated molecular mass and isoelectric point of the alyPEEC gene product are 43.2 kDa and pI 5.29. A region G(165) to V(194) in the AlyPEEC internal sequence is identical to the N-terminal amino acid sequence of the previously purified extracellular alginate lyase of P. elyakovii, and the calculated molecular mass (25.4 kDa) and isoelectric point (pI 4.78) of the region resembled those of the purified enzyme. Expression of enzymically-active alginate lyase from alyPEEC required growth of recombinant E. coli in LB broth containing 50% (v/v) artificial seawater (ASW). Alginate lyase activity with broad substrate specificity was detected in both 42 and 30 kDa products. Subcloning of the region G(165) to N(398) of AlyPEEC corresponding to the 30 kDa protein confirmed that this region of the alyPEEC gene encoded the active site of the enzyme. A region A(32) to G(164) corresponding to about 13 kDa of the N-terminal region of AlyPEEC showed about 30% identity to a putative chitin binding domain of Streptomyces chitinases, but did not exhibit any catalytic activity.  相似文献   

7.
PmHNL, a hydroxynitrile lyase from Japanese apricot ume (Prunus mume) seed was purified to homogeneity by ammonium sulfate fractionation and chromatographic steps. The purified enzyme was a monomer with molecular mass of 58 kDa. It was a flavoprotein similar to other hydroxynitrile lyases of the Rosaceae family. It was active over a broad temperature, and pH range. The N-terminal amino acid sequence (20 amino acids) was identical with that of the enzyme from almond (Prunus dulcis). Based on the N-terminal sequence of the purified enzyme and the conserved amino acid sequences of the enzymes from Pr. dulcis, inverse PCR method was used for cloning of a putative PmHNL (PmHNL2) gene from a Pr. mume seedling. Then the cDNA for the enzyme was cloned. The deduced amino acid sequence was found to be highly similar (95%) to that of an enzyme from Pr. serotina, isozyme 2. The recombinant Pichia pastoris transformed with the PmHNL2 gene secreted an active enzyme in glycosylated form.  相似文献   

8.
9.
Cloning and expression of a human ATP-citrate lyase cDNA.   总被引:1,自引:0,他引:1  
A full-length cDNA clone of 4.3 kb encoding the human ATP-citrate lyase enzyme has been isolated by screening a human cDNA library with the recently isolated rat ATP-citrate lyase cDNA clone [Elshourbagy et al. (1990) J. Biol. Chem. 265, 1430]. Nucleic-acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1105 amino acids in length with a calculated molecular mass of 121,419 Da. Comparison of the human and rat ATP-citrate lyase cDNA sequences reveals 96.3% amino acid identity throughout the entire sequence. Further sequence analysis identified the His765 catalytic phosphorylation site, the ATP-binding site, as well as the CoA binding site. The human ATP-citrate lyase cDNA clone was subcloned into a mammalian expression vector for expression in African green monkey kidney cells (COS) and Chinese hamster ovary cells (CHO) cells. Transfected COS cells expressed detectable levels of an enzymatically active recombinant ATP-citrate lyase enzyme. Stable, amplified expression of ATP-citrate lyase in CHO cells as achieved by using coamplification with dihydrofolate reductase. Resistant cells expressed high levels of enzymatically active ATP-citrate lyase (3 pg/cell/d). Site-specific mutagenesis of His765----Ala diminishes the catalytic activity of the expressed ATP-citrate lyase protein. Since catalysis of ATP-citrate lyase is postulated to involve the formation of phosphohistidine, these results are consistent with the pattern of earlier observations of the significance of the histidine residue in catalysis of the human ATP-citrate lyase.  相似文献   

10.
The acylneuraminate lyase gene from Clostridium perfringens A99 was cloned on a 3.3 kb HindIII DNA fragment identified by screening the chromosomal DNA of this species by hybridization with an oligonucleotide probe that had been deduced from the N-terminal amino acid sequence of the purified protein, and another probe directed against a region that is conserved in the acylneuraminate lyase gene of Escherichia coli and in the putative gene of Clostridium tertium. After cloning, three of the recombinant clones expressed lyase activity above the background of the endogenous enzyme of the E. coli host. The sequenced part of the cloned fragment contains the complete acylneuraminate lyase gene (ORF2) of 864 bp that encodes 288 amino acids with a calculated molecular weight of 32.3 kDa. The lyase structural gene follows a non-coding region with an inverted repeat and a ribosome binding site. Upstream from this regulatory region another open reading frame (ORF1) was detected. The 3′-terminus of the lyase structural gene is followed by a further ORF (ORF3). A high homology was found between the amino acid sequences of the sialate lyases from Clostridium perfringens and Haemophilus influenzae (75% identical amino acids) or Trichomonas vaginalis (69% identical amino acids), respectively, whereas the similarity to the gene from E. coli is low (38% identical amino acids). Based on our new sequence data, the ‘large’ sialidase gene and the lyase gene of C. perfringens are not arranged next to each other on the chromosome of this species. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
The cDNA sequence of rabbit motilin precursor has been determined. The predicted amino acid sequence indicates that the precursor consists of 133 amino acids and includes a 25 amino acid signal peptide followed by the 22 amino acid motilin sequence and an 86 amino acid motilin associated peptide (MAP). As in the human and porcine precursors, two lysine residues follow motilin in the rabbit sequence. Rabbit motilin shares 64% amino acid sequence identity with human and porcine motilin, and all amino acid substitutions represent conservative changes. Amino acid sequence alignments of the rabbit, human and porcine MAP sequences suggest three functional/structural motifs corresponding to a putative endoproteinase recognition site, a putative PEST site and a potential posttranslational processing recognition element.  相似文献   

12.
1. We have purified a 58 kDa collagen-binding protein from a 4 M guanidine hydrochloride extract of porcine kidney. 2. This protein was identified as a mature form of 60 kDa heat-shock protein (HSP60, chaperonin homolog) based on its partial amino acid sequence. 3. Among 98 determined sequences of the porcine protein, 97 residues were identical with those deduced from nucleotide sequence of the cDNA encoding human HSP60.  相似文献   

13.
The mRNA sequences for two rat pancreatic elastolytic enzymes have been cloned by recombinant DNA technology and their nucleotide sequences determined. Rat elastase I mRNA is 1113 nucleotides in length, plus a poly(A) tail, and encodes a preproelastase of 266 amino acids. The amino acid sequence of the predicted active form of rat elastase I is 84% homologous to porcine elastase 1. Key amino acid residues involved in determining substrate specificity of porcine elastase 1 are retained in the rat enzyme. The activation peptide of the zymogen does not appear related to that of other mammalian pancreatic serine proteases. The mRNA for elastase I is localized in the rough endoplasmic reticulum of acinar cells, as expected for the site of synthesis of an exocrine secretory enzyme. Rat elastase II mRNA is 910 nucleotides in length, plus a poly(A) tail, and encodes a preproenzyme of 271 amino acids. The amino acid sequence is more closely related to porcine elastase 1 (58% sequence identity) than to the other pancreatic serine proteases (33-39% sequence identity). Predictions of substrate preference based upon key amino acid residues that define the substrate binding cleft are consistent with the broad specificity observed for mammalian pancreatic elastase 2. The activation peptide is similar to that of the chymotrypsinogens and retains an N-terminal cysteine available to form a disulfide link to an internal conserved cysteine residue.  相似文献   

14.
Cells of Bacillus sp. GL1 extracellularly secrete a gellan lyase with a molecular mass of 130 kDa responsible for the depolymerization of a heteropolysaccharide (gellan), although the gene is capable of encoding a huge protein with a molecular mass of 263 kDa. A maturation route for gellan lyase in the bacterium was determined using anti-gellan lyase antibodies. The fluid of the bacterial exponentially growing cultures on gellan contained two proteins with molecular masses of 260 and 130 kDa, both of which reacted with the antibodies. The 260 kDa protein was purified from the cultured fluid and characterized. The protein exhibited gellan lyase activity and showed similar enzyme properties, such as optimal pH and temperature, thermal stability, and substrate specificity, to those of the 130 kDa gellan lyase. The N-terminal amino acid sequences of the 260 and 130 kDa enzymes were found to be identical. Determination of the C-terminal amino acid of the 130 kDa enzyme indicated that the 260 kDa enzyme is cleaved between the 1205Gly and 1206Leu residues to yield the mature form (130 kDa) of the gellan lyase. Therefore, the mature enzyme consists of 1170 amino acids (36Ala-1205Gly) with a molecular weight of 125,345, which is in good agreement with that calculated from SDS-PAGE analysis. Judging from these results, gellan lyase is first synthesized as a preproform (263 kDa) and then secreted as a precursor (260 kDa) into the medium through cleavage of the signal peptide. Finally, the precursor is post-translationally processed into the N-terminal half domain of 130 kDa as the mature form, the function of C-terminal half domain being unclear.  相似文献   

15.
4-Hydroxyphenylpyruvic acid dioxygenase is an important enzyme in tyrosine catabolism in most organisms. From porcine and human liver cDNA libraries we isolated complementary DNA inserts for the enzyme. Protein sequence analysis of the porcine enzyme revealed a block of the amino terminus of the mature enzyme. Comparison of the amino acid sequence determined by Edman degradation of peptides derived from porcine liver 4-hydroxyphenylpyruvic acid dioxygenase with the nucleotide sequences revealed the primary structure of the porcine and human enzymes. The mature human and porcine enzymes have an 89% amino acid sequence identity in amino acid residues and are composed of 392 amino acid residues. A computer-assisted homology search revealed that the enzyme is 88% identical in amino acid sequence to rat liver-specific alloantigen F. A monoclonal antibody (mob 51), which can immunoprecipitate both the human and porcine enzymes, was developed. Cultured BMT-10 cells transfected with the cDNA insert of the human enzyme, using the expression vector pCAGGSneodE, produced a polypeptide with an M(r) of 43,000, which was immunoprecipitated with mob 51. Enzymic activity of the enzyme was detected in the transfected cells but not in the mock transfected cells. These findings suggest that the human 4-hydroxyphenylpyruvic acid dioxygenase is a homodimer of two identical subunits with an M(r) of 43,000. Liver-specific alloantigen F seems to be closely related to the enzyme or possibly to the subunit of the enzyme itself. Elucidation of the complete amino acid sequence of the enzyme is expected to reveal structure-function relationships of this metabolically important enzyme and to shed light on inherited disorders related to tyrosine metabolism, especially tyrosinemia types 1 and 3.  相似文献   

16.
K Fukui  F Watanabe  T Shibata  Y Miyake 《Biochemistry》1987,26(12):3612-3618
Complementary DNAs encoding D-amino acid oxidase (EC 1.4.3.3, DAO), one of the principal and characteristic enzymes of the peroxisomes of porcine kidney, have been isolated from the porcine kidney cDNA library by hybridization with synthetic oligonucleotide probes corresponding to the partial amino acid sequences. Analysis of the nucleotide sequences of two clones revealed a complete 3211-nucleotide sequence with a 5'-terminal untranslated region of 198 nucleotides, 1041 nucleotides of an open reading frame that encoded 347 amino acids, and a 3'-terminal untranslated region of 1972 nucleotides. The deduced amino acid sequence was completely identical with the reported sequence of the mature enzyme [Ronchi, S., Minchiotti, L., Galliano, M., Curti, B., Swenson, R. P., Williams, C. H. J., & Massey, V. (1982) J. Biol. Chem. 257, 8824-8834]. These results indicate that the primary translation product does not contain a signal peptide at its amino-terminal region for its translocation into peroxisomes. RNA blot hybridization analysis suggests that porcine kidney D-amino acid oxidase is encoded by three mRNAs that differ in size: 3.3, 2.7, and 1.5 kilobases. Comparison of the sequences of the two cDNA clones revealed that multiple polyadenylation signal sequences (ATTAAA and AACAAA) are present in the 3'-untranslated region, making the different mRNA species. The efficiency of 3' processing of the RNA was quite different between the two signal sequences ATTAAA and AACAAA. Southern blot analysis showed the presence of a unique gene for D-amino acid oxidase in the porcine genome.  相似文献   

17.
The catalytic subunit of the H(+)-ATPase from brush-border membranes of porcine renal proximal tubules was labeled with the hydrophobic SH-group reagent 10-N-(bromoacetyl)amino-1-decyl-beta-glucopyranoside (BADG) which irreversibly inhibits proton pump activity in the absence but not in the presence of ATP. The labeled protein was purified and digested with proteinases. After isolation and sequencing of proteolytic peptides two BADG-labeled cysteines were identified. The amino acid sequences of the obtained proteolytic peptides were homologous to the catalytic subunit of V-ATPases. From mRNA of porcine kidney cortex a catalytic H(+)-ATPase subunit was cloned. 181 of the 183 amino acids which overlap in the sequence derived from the cDNA and the proteolytic peptides were identical, and the two deviations are due to single base exchanges. A comparison of the amino acid sequence derived from the cloned cDNA with sequences of catalytic H(+)-ATPase subunits communicated by other laboratories revealed 98%, 96% and 94% identity with sequences from bovine adrenal medulla, from bovine kidney medulla and from clathrin-coated vesicles of bovine brain. Between 64% and 69% identity was obtained with sequences from fungi and plants. The data show that the catalytic subunit of V-ATPases is highly conserved during evolution. They indicate organ and species specificity in mammalians.  相似文献   

18.
A cDNA encoding the complete amino acid sequence of aminoacylase 1 (N-acylamino acid aminohydrolase, ACY-1) [EC 3.5.1.14], a dimeric metalloprotein having two Zn2+ in the molecule, which catalyzes the deacylation of N-acylated L-amino acids except L-aspartic acid, has been isolated from porcine kidney lambda gt10 cDNA library and sequenced. From sequence analysis of the cDNA and the N- and C-terminal amino acid analyses of the purified protein, it is deduced that porcine kidney ACY-1 consists of two identical subunits (M(r) 45,260), each of which consists of a single chain of 406 amino acids with acetylalanine at the N-terminus. A cDNA encoding porcine liver ACY-1 was also cloned. The amino acid sequence deduced from the nucleotide sequence of the cDNA from porcine liver was identical to that deduced for porcine kidney ACY-1. Northern blot analysis suggested that ACY-1 is more highly expressed in kidney than in liver. Comparison of the amino acid sequence of porcine ACY-1 with those of other Zn2+-binding metalloenzymes showed no significant homologies in either the overall sequence or the consensus sequences for the metal binding sites. This indicates that ACY-1 is a new type of metalloprotein.  相似文献   

19.
20.
Acrosin purified from an acidic extract of ejaculated goat spermatozoa migrated as a single 42,000-Mr band in SDS/polyacrylamide-gel electrophoresis. Reduction and alkylation of caprine acrosin produced two polypeptides, one of Mr 40,000 (heavy chain) and the other of Mr 3700 (light chain). The light chain purified by reversed-phase h.p.l.c. was a glycosylated octadecapeptide with an amino acid sequence similar to that of the N-terminal 18 residues of porcine acrosin light chain (78% positional identity). The sequence of the N-terminal 37 amino acids of purified caprine acrosin heavy chain is similar to that of porcine acrosin heavy chain (70% positional identity through 37 residues). Studies with synthetic substrates and synthetic and natural proteinase inhibitors confirmed both the specificity of the purified proteinase for Arg-Xaa and Lys-Xaa bonds and a serine-proteinase mechanism. Purified caprine acrosin hydrolysed the 90 kDa and 65 kDa components, but did not hydrolyse the 55 kDa component of the porcine zona pellucida. The action of the enzyme on the porcine zona pellucida was indistinguishable from that previously reported for porcine acrosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号