首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hepatotoxic doses of acetaminophen in Fischer 344 rats did not increase biliary efflux of oxidized glutathione. Pretreatment of the animals with bis(2-chloroethyl)-N-nitrosourea inhibited hepatic glutathione reductase by 73 percent but did not potentiate the hepatotoxicity of acetaminophen and did not produce an increase in biliary efflux of oxidized glutathione in response to acetaminophen. Hepatic protein thiol content was not depleted by acetaminophen. A proposed role for oxidant stress mechanisms mediated either by reactive oxygen species or by the direct oxidant action of a reactive metabolite in acetaminophen-induced hepatotoxicity is unsubstantiated and unlikely.  相似文献   

2.
The potential toxicity of enhanced intracellular reactive oxygen formation was investigated in isolated perfused livers of male Fischer rats. The presence of the redox-cycling agent diquat in the perfusate (200 microM) increased the basal efflux of glutathione disulfide (GSSG) into bile (2.65 +/- 0.26 nmol GSH-equivalents/min per g liver wt.) and perfusate (0.55 +/- 0.15 nmol/min per g) approximately 10-fold. Since no evidence was found for degradation of GSSG in the biliary tract of these animals, it could be estimated that diquat induced a constant O2- generation of approximately 1000 nmol/min per g liver wt for 1 h. Thus, reactive oxygen formation under these conditions was 1-2 orders of magnitude higher than under various pathophysiological conditions. Only minor liver injury (release of lactate dehydrogenase activity) was observed. To increase the susceptibility of the liver to the oxidant stress, animals were pretreated in vivo with 200 mg/kg body wt. phorone, which caused a 90% depletion of the hepatic glutathione content, 100 mg/kg ferrous sulfate, a combination of phorone and ferrous sulfate, or 40 mg/kg BCNU, which caused a 60% inhibition of hepatic GSSG reductase. Only the combined treatment of phorone + ferrous sulfate or BCNU caused a significant increase of the diquat-induced liver injury. Our results demonstrated an extremely high resistance of the liver against intracellular reactive oxygen formation (even with impaired detoxification systems) and can serve as reference for the evaluation of potential contributions of reactive oxygen to liver injury in various disease states.  相似文献   

3.
The increased expiration of ethane and pentane by mice treated with hepatotoxic doses of acetaminophen suggests the possibility of oxidant mechanisms associated with the necrosis. However, studies in rats are not consistent with oxidant stress mechanisms causing the damage, because acetaminophen given to rats does not increase GSSG efflux, a sensitive index of intrahepatic oxidant stress. To compare the extent of oxidant stress generated by acetaminophen in mice versus rats, hepatic content and biliary efflux of GSSG and GSH in mice have been examined. Bile was collected from anesthetized male ICR mice before and after intraperitoneal administration of acetaminophen (325 mg/kg, 2.15 mmol/kg), t-butyl hydroperoxide (TBHP) (1.5 mmol/kg), diethyl maleate (400 mg/kg, 2.33 mmol/kg, in corn oil) or saline (control) and GSH and GSSG were measured by the enzymatic recycling method of Tietze. An increase in biliary GSSG efflux was produced by t-butyl hydroperoxide, but not by the other agents. Biliary GSH/GSSG ratios decreased in acetaminophen-treated animals, presumably reflecting the marked depletion of hepatic GSH, since a similar decrease was observed with non-hepatotoxic doses of diethyl maleate. The failure of acetaminophen to increase the hepatic content or biliary efflux of GSSG in ICR mice is not consistent with the view that oxidant stress mechanisms cause the damage, despite the increases in alkanes expired after acetaminophen administration in this specific animal model.  相似文献   

4.
The mechanisms by which acute administration of methapyrilene, an H(1)-receptor antihistamine causes periportal necrosis to rats are unknown. This study investigated the role of the hepato-biliary system in methapyrilene hepatotoxicity following daily administration of 150 mg/kg per day over 3 consecutive days. Biliary metabolites of methapyrilene were tentatively identified. In male Han Wistar rats administration of methapyrilene significantly increased hepatic reduced glutathione (GSH) to 140% of control levels 24 h following the last dose. There were no significant changes in the activities of glutathione-related enzymes, glutathione peroxidase (GPx) and reductase (GSH), glutathione S-transferase (GST), and gamma-glutamyl cysteine synthetase (gamma-GCS) over 3 days of methapyrilene administration. Methapyrilene treatment resulted in no significant increase in excretion of biliary oxidized glutathione (GSSG), a sensitive marker of oxidative stress in vivo, following the third dose. [3H]Methapyrilene-derived radioactivity was detected in bile, to a greater extent than in feces, indicating that methapyrilene and/or metabolites underwent enterohepatic recirculation. Cannulation and exteriorization of the bile duct (to interrupt enterohepatic recirculation) afforded some protection against the hepatotoxicity, assessed by clinical chemistry and histopathology. Liquid chromatography-mass spectrometry (LC-MS) analysis of bile indicated the presence of unmetabolized methapyrilene, methapyrilene O-glucuronide and desmethyl methapyrilene O-glucuronide. These data demonstrate that acute methapyrilene hepatotoxicity in vivo is not a consequence of GSH depletion, or oxidative stress, but that enterohepatic recirculation of biliary metabolites may be important. Progressive exposure to non-oxidizing, reactive metabolic intermediates may be responsible for hepatotoxicity.  相似文献   

5.
Lethal injury by diquat redox cycling in an isolated hepatocyte model   总被引:1,自引:0,他引:1  
Hepatocyte isolated by collagenase perfusion of livers of male Fischer-344 rats, and treated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (50 microM for 30 min at 37 degrees C) to inhibit glutathione reductase, were significantly more vulnerable to cytotoxicity of the bipyridyl herbicide diquat than similarly treated cells of Sprague-Dawley rats. Without compromise of cell defenses by BCNU, diquat was not cytotoxic to hepatocytes from either strain. Microsomal enzyme induction with phenobarbital (80 mg/kg ip for 3 days before hepatocyte isolation) did not potentiate killing of Fischer hepatocytes by diquat. Specific activities of NADPH-cytochrome P-450 reductase in isolated Fischer and Sprague-Dawley rat liver microsomes utilizing 1 mM diquat as acceptor were 0.085 +/- 0.017 and 0.076 +/- 0.028 mumol/mg.min (mean +/- SEM, N = 5), respectively, indicating the capacity for very active redox cycling of diquat by this route in both strains. The serine protease inhibitor, phenylmethylsulfonyl fluoride (100 microM), had no effect on diquat cytotoxicity, but both leupeptin (100 micrograms/ml) and antipain (50 or 100 microM) were able to delay, through not completely prevent, diquat-induced cell death. The phospholipase inhibitors, chlorpromazine (50 or 100 microM) and dibucaine (50 or 100 microM), similarly delayed but did not prevent cell death. Diquat increased the rate of hepatocyte phospholipid hydrolysis, measured as release into the suspending medium of [14C]arachidonic acid previously incorporated into hepatocyte lipids, but although chlorpromazine decreased phospholipid hydrolysis to the control rate, only partial protection against diquat cytotoxicity was seen. These data suggest that activation of phospholipase A2 and proteases by elevation of cytosolic free Ca2+ cannot account entirely for the loss of cell viability observed in the presence of cytotoxic concentrations of diquat.  相似文献   

6.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

7.
Studies of the killing of cultured hepatocytes by acetaminophen indicate that the cells are injured by an oxidative stress that accompanies the metabolism of the toxin (J. L. Farber et al. (1988) Arch. Biochem. Biophys. 267, 640-650). The present report documents that the essential features of the killing of cultured hepatocytes by acetaminophen are reproduced in the intact animal. Male rats had no evidence of liver necrosis 24 h after administration of up to 1000 mg/kg of acetaminophen. Induction of mixed function oxidase activity by 3-methylcholanthrene increased the hepatotoxicity of acetaminophen. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) potentiated the hepatotoxicity of acetaminophen in male rats induced with 3-methylcholanthrene. Whereas the pretreatment with BCNU reduced the GSH content by 40%, a comparable depletion of GSH by diethylmaleate did not potentiate the toxicity of acetaminophen. The antioxidant diphenylphenylenediamine (25 mg/kg) and the ferric iron chelator deferoxamine (1000 mg/kg) prevented the liver necrosis produced by 500 mg/kg acetaminophen in rats pretreated with BCNU. Neither protective agent prevented the fall in GSH produced by acetaminophen. It is concluded the conditions of the irreversible injury of cultured hepatocytes by acetaminophen previously reported are not necessarily different from those that obtain in the intact rat with this toxin.  相似文献   

8.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

9.
Precocene II (6,7-dimethoxy-2,2-dimethyl-2H-benzo[b]pyran), an insect growth regulator that is structurally related to several naturally occurring carcinogenic and non-carcinogenic alkenylbenzenes, is genotoxic and produces hepatic centrolobular necrosis in rats. This investigation was conducted to evaluate the effects of modulation of hepatic glutathione levels on the toxicity of precocene II. Administration of a toxic dose of precocene II (175 mg/kg) to male Sprague-Dawley rats rapidly depleted hepatic GSH, produced histopathological changes in the liver, and induced increases in serum aminotransferase activity. Concurrent administration of the cysteine pro-drug L-2-oxothiazolidine-4-carboxylic acid (OTC) prevented these toxic effects of precocene II. In contrast, pretreatment of rats with DL-buthionine-SR-sulfoximine (BSO), an inhibitor of glutathione synthesis, potentiated the toxicity of an otherwise non-toxic dose of precocene II (100 mg/kg). These results indicate that glutathione is important for protection from precocene II-induced hepatotoxicity.  相似文献   

10.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

11.
The effects of cyclosporine A (CyA) treatment on the hepatic content and biliary output of reduced (GSH) and oxidized (GSSG) glutathione and lipid peroxidation in the liver, and the ability of S-adenosylmethionine (SAMe) to antagonize the CyA-induced alterations were studied in male Wistar rats. To evaluate the efficacy of SAMe, three CyA and SAMe protocols were used: cotreatment with SAMe plus CyA, pretreatment with SAMe before starting cotreatment, and post-treatment with SAMe after beginning treatment with CyA alone. CyA treatment for one and four weeks depleted liver GSH, decreased the GSH/GSSG ratio and significantly reduced GSH and GSSG biliary concentrations and secretion rates. Additionally, long-term treatment enhanced lipid peroxidation. By contrast, when the rats were treated with CyA plus SAMe using any of the administration protocols, SAMe was seen to be efficient in antagonizing the GSH hepatic depletion, the changes in hepatic GSH/GSSG ratio and the increase induced by CyA in lipid peroxidation. Furthermore, SAMe also abolished the effects of CyA on the biliary secretion rates of GSH and GSSG. The efficacy of SAMe was similar, regardless of the administration protocols used. In conclusion, our results clearly demonstrate that SAMe is good for preventing, antagonizing and reversing the CyA-induced alterations in the hepatobiliary homeostasis of glutathione.  相似文献   

12.
Wheat bran had a protective effect against diquat toxicity in rats fed a purified diet (PD). We studied the effects of wheat bran on the antioxidant system in the liver of rats treated with saline and diquat. Although feeding wheat bran did not affect the concentration of hepatic non-protein sulfhydryl or the activity of glucose 6-phosphate dehydrogenase in the saline-injected rats, these values were significantly higher in the rats fed PD containing wheat bran (W-PD) than in rats fed only PD after administering diquat. The glutathione peroxidase and reductase activities were significantly elevated by wheat bran in the saline-injected rats. Although the glutathione peroxidase activity was unchanged in both the PD-fed rats and W-PD-fed rats after the diquat treatment, the glutathione reductase activity was significantly decreased in both the PD-fed and W-PD-fed rats. Feeding the rats with PD containing 0.15 ppm selenium as well as with W-PD elevated the activity of hepatic glutathione peroxidase and attenuated the diquat toxicity. These results indicate that wheat bran protected against diquat toxicity by activating the hepatic antioxidant system, and that selenium was the key antioxidant in wheat bran.  相似文献   

13.
Endotoxin causes neutrophil-independent oxidative stress in rats   总被引:1,自引:0,他引:1  
Endotoxin-induced oxidative stress is investigated in rats by measuring changes in plasma and lung tissue levels of glutathione disulfide (GSSG) using a modified enzymatic assay that allows simultaneous measurement of up to 80 samples. Salmonella enteritidis endotoxin (2 and 20 mg/kg) acutely increased both plasma reduced glutathione and GSSG with a rise in the ratio of GSSG to total glutathione. This increase in GSSG was enhanced by pretreatment with 1,3-bis(2-chloroethyl)1-nitrosourea (BCNU), an inhibitor of the glutathione reductase enzyme. However, there was no significant arteriovenous difference in plasma GSSG across the lung, and lung tissue GSSG did not increase after endotoxin treatment. The increase in plasma GSSG was not blocked by vinblastine-induced neutropenia and could not be reproduced by incubating rat blood in vitro with endotoxin. Receptor antagonists of platelet-activating factor (PAF), at a dose that previously inhibited endotoxin-induced lung injury, attenuated the endotoxin-induced increase in plasma GSSG. We conclude that endotoxin causes neutrophil-independent oxidative stress in rats, which may be enhanced by the action of platelet-activating factor.  相似文献   

14.
The participation of glutathione reductase in the process of nutrient-stimulated insulin release was investigated in rat pancreatic islets exposed to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU caused a time-and dose-related, irreversible inhibition of glutathione reductase activity. This coincided with a fall in both GSH/GSSG ratio and the thiol content of the islets. Pretreatment of the islets with BCNU inhibited the oxidation of glucose and its stimulant action upon both 45Ca net uptake and insulin release. Although BCNU (up to 0.5 mM) failed to affect the oxidation of L-leucine and L-glutamine, it also caused a dose-related inhibition of insulin release evoked by the combination of these two amino acids. The latter inhibition was apparently not fully accounted for by the modest to negligible effects of BCNU upon 45Ca uptake, 45Ca efflux, 86Rb efflux and cyclic AMP production. Since BCNU failed to inhibit insulin release evoked by the association of Ba2+ and theophylline, these results support the view that glutathione reductase participates in the coupling of metabolic to secretory events in the process of nutrient-stimulated insulin release. However, the precise modality of such a participation, for example the control of intracellular Ca2+ distribution, remains to be elucidated.  相似文献   

15.
Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10–20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.  相似文献   

16.
Incubation of isolated hepatocytes in the presence of either the parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its putative toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) led to a depletion of intracellular reduced glutathione (GSH), which was mostly recovered as glutathione disulfide (GSSG). However, both MPTP- and MPP+-induced glutathione perturbances were relatively unaffected by the prior inhibition of glutathione reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), suggesting that intracellular oxidation was not the major mechanism involved in the GSH loss. Inclusion of cystine in the incubation mixtures revealed a time-dependent formation of cysteinyl glutathione (CySSG), indicating that an increased efflux was mostly responsible for the MPTP- and MPP+-induced GSH depletion. Therefore, the measurement of GSSG, which is apparently formed extracellularly, was not associated with oxidative stress.  相似文献   

17.
Kupffer cell-derived oxidant stress is critical for reperfusion injury after no-flow ischemia. However, the importance of Kupffer cells as source of reactive oxygen formation is unclear in a hemorrhagic shock model. Therefore, we evaluated Kupffer cell activation after 60 or 120 min of hemorrhage and 90 min of resuscitation (HS/RS) in pentobarbital-anesthetized male Fischer rats. Plasma glutathione disulfide (GSSG) as indicator for a vascular oxidant stress showed no significant changes after HS/RS. Plasma ALT activities were only moderately increased (100-200 U/L). Kupffer cells isolated from postischemic livers did not generate more superoxide than cells from sham controls. In contrast, the 10-fold increase of plasma GSSG and the 9-fold higher spontaneous superoxide formation of Kupffer cells after 60 min of hepatic no-flow ischemia followed by 90 min of reperfusion demonstrated the activation of Kupffer cells in this experimental model. Plasma ALT activities (1930 +/- 240 U/L) indicated severe liver injury. These results demonstrate a fundamental difference in the degree of Kupffer cell activation between the two models of warm hepatic ischemia. Our findings suggest that different therapeutic strategies are necessary to ameliorate the initial injury after low flow ischemia (hemorrhage) compared to cold (transplantation) or warm (Pringle maneuver) no-flow ischemia.  相似文献   

18.
To explore the role of the glutathione oxidation-reduction cycle in altering the sensitivity of rats to the effects of hyperbaric hyperoxia, we administered N,N-bis(2-chloroethyl)-N-nitrosourea (BCNU) to decrease tissue glutathione reductase activity. We then exposed these animals and their matched vehicle-treated controls to 100% O2 at 4 ATA. Animals that received BCNU and were immediately exposed to hyperbaric O2 showed enhanced toxicity by seizing earlier in the exposure than controls. Animals that received BCNU 18 h before the hyperbaric O2 exposure were paradoxically protected from the effects of the exposure with a prolongation of their time to initial seizure and a marked increase in their survival time during the exposure. Tissue glutathione concentrations were also measured in the various groups and the hyperbaric O2 exposure produced marked decreases in hepatic glutathione levels in all control animals. In animals treated with BCNU 18 h before exposure, hepatic glutathione concentrations also decreased, but the concentrations had significantly increased during the 18-h waiting period, allowing these animals to maintain hepatic levels in the normal range even during their hyperbaric exposures. We conclude that treatment of rats with BCNU 18 h before exposure to hyperbaric hyperoxia results in enhanced protection of the animals during the exposure.  相似文献   

19.
The protective effect of pinitol against D-galactosamine (GalN)-induced liver damage was examined. Forty male Sprague-Dawley rats were divided into normal control, GalN control, and pinitol groups (0.5%, 1%, and 2%). After 8 weeks of feeding, a single dose of GalN (650 mg/kg) was administered 24 h before their sacrifice. The serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and tumor necrosis factor-alpha (TNF-alpha) levels were significantly increased after an injection with GalN (P<0.05), but pinitol supplementation at the level of 0.5% reversed these changes to normal levels. Significant decreases in serum triglyceride and cholesterol and increases in hepatic cholesterol were observed in GalN-intoxicated rats. However, supplementation with pinitol significantly attenuated these trends. In addition, pinitol elevated the Mn-superoxide dismutase, glutathione reductase, and catalase activities, prevented hepatic lipid peroxidation, and restored the hepatic GSH levels and cytochrome P450 2E1 function. Thus, 0.5% pinitol supplementation protected the rats from the hepatotoxicity induced by GalN, at least part of its effect being attributable to attenuation of the oxidative stress and inflammatory process promoted by GalN.  相似文献   

20.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号