首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The role of platelet prostanoids and substances released from dense bodies (ADP and serotonin) in the initial attachment, spreading and aggregation of platelets on surfaces coated with I, III, IV and V genetic types of collagen was investigated. A positive linear correlation was found to exist between thrombi-like aggregate formation on collagen substrates and platelet prostanoid synthesis. No correlation was established between platelet aggregate formation and 14C-serotonin release. The cyclooxygenase inhibitor indomethacin and the antagonists of PG endoperoxides and TXA2 (13-APA and BM 13.177) completely block thrombi-like aggregate formation. Neither 13-APA nor BM 13.177 affect platelet spreading, while indomethacin inhibits this process by 25%. The ADP-scavenger CP/CPK inhibits platelet aggregation and spreading by 25-30%. The inhibitors of cyclooxygenase and CP/CPK do not influence the initial attachment of platelets. The data obtained suggest that thrombi-like aggregate formation on collagen substrates is mediated by the synthesis of PG endoperoxides and TXA2; however, in platelet spreading this synthesis plays a limited role. Spreading and aggregation of platelets on collagen substrates is only partly mediated by ADP and serotonin. Initial attachment of platelets does not depend on ADP and serotonin release and PG endoperoxide/TXA2 synthesis.  相似文献   

2.
Octadecadienoic acids (linoleic acid and linolelaidic acid) and the diacylglycerol, 1-oleoyl-2-acetyl-rac-glycerol (OAG) concentration-dependently induced activation of gel-filtered human platelets, i.e. aggregation and phosphorylation of 20 kDa and 47 kDa peptides. In contrast, octadecenoic acids (oleic and elaidic acid) and octadecanoic (stearic) acid were inactive. Octadecadienoic acid-induced platelet activation was suppressed by the protein kinase C inhibitor, polymyxin B, but not by the cyclooxygenase inhibitor, indomethacin. OAG-induced activation was potentiated by octadecadienoic acids present at non-stimulatory concentrations. Our data suggest that octadecadienoic acids and diacylglycerol synergistically induce platelet activation via protein kinase C. Furthermore, linolelaidic acid may provide a useful experimental tool to study fatty acid regulation of protein kinase C in intact cells.  相似文献   

3.
蛋白激酶C在血小板聚集中的作用   总被引:3,自引:0,他引:3  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

4.
Experiments were performed to elucidate the role of cyclic guanosine monophosphate (cGMP) on platelet activation induced by protein kinase C (PKC) activators and calcium ionophore. Human platelets were pretreated with acetylsalicylic acid and with hirudin and apyrase. Aggregation and ATP secretion in response to the PKC activators 4 beta-phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl 2-acetylglycerol (OAG) were inhibited by the nitrovasodilator sodium nitroprusside (SNP), an activator of guanylate cyclase, and by 8-bromo-cyclic GMP (8-Br-cGMP). The experiments were performed in the presence of M&B 22948, an inhibitor of cGMP phosphodiesterase. SNP and 8-Br-cGMP also inhibited platelet aggregation and secretion evoked by the ionophore ionomycin. In fura-2 loaded platelets SNP did not affect basal cytosolic Ca2+ level nor the rise induced by low concentrations of ionomycin, both in the presence and absence of extracellular Ca2+. The phosphorylation of the 47 and 20 kDa protein induced by ionomycin or PMA were not significantly decreased by SNP or 8-Br-cGMP. The present results suggest that cGMP is able to inhibit both the PKC and the Ca(2+)-dependent pathways leading to platelet activation by interfering, similarly to cAMP, with processes following protein phosphorylation, close to the effector systems.  相似文献   

5.
Lee KS  Khil LY  Chae SH  Kim D  Lee BH  Hwang GS  Moon CH  Chang TS  Moon CK 《Life sciences》2006,78(10):1091-1097
In the present study, the mechanism of antiplatelet activity of DK-002, a synthesized (6aS,cis)-9,10-Dimethoxy-7,11b-dihydro-indeno[2,1-c]chromene-3,6a-diol, was investigated. DK-002 inhibited the thrombin, collagen, and ADP-induced rat platelet aggregation in a concentration-dependent manner, with IC50 values of 120, 27, and 47 μM, respectively. DK-002 also inhibited thrombin-induced dense granule secretion, thromboxane A2 synthesis, and [Ca2+]i elevation in platelets. DK-002 did not show any significant effect on ADP-induced inhibition of cyclic AMP elevation by prostaglandin E1, but DK-002 was confirmed to inhibit ADP-induced [Ca2+]i elevation and shape change. DK-002 inhibited 4-bromo-A23187-induced [Ca2+]i elevation in the presence of creatine phosphate/creatine phosphokinase (CP/CPK, a ADP scavenging system) and indomethacin (a specific inhibitor of cyclooxygenase). DK-002 also inhibited Ca2+ mobilization in thrombin- or 4-bromo-A23187-stimulated platelets through its inhibitory effects on both Ca2+ release from intracellular stores and Ca2+ influx, in the presence of CP/CPK and indomethacin. Taken together, the present study shows that DK-002 has inhibitory effects on stimulation of platelets, and suggests that its antiplatelet activity might be related to the inhibitory mechanism on Ca2+ mobilization in stimulated platelets.  相似文献   

6.
Thrombin, 1-oleoyl-2-acetyl-rac-glycerol (OAG), cis- or trans-octadecadienoic acids (linoleic and linolelaidic acid) and the synergistic combination of octadecadienoic acids plus OAG lead to the activation of gel-filtered human platelets, i.e. aggregation via protein kinase C (PKC). Platelet activation by thrombin was only slightly suppressed by polymyxin B, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or staurosporine, all being potent inhibitors of PKC in vitro. The OAG-induced aggregation, however, was strongly inhibited by H-7 or staurosporine but not by polymyxin B. In contrast, octadecadienoic acid-induced aggregation was substantially inhibited only by polymyxin B. Synergistic activation by OAG plus octadecadienoic acids was strongly suppressed by all three PKC inhibitors. Our results indicate (1) that the ability of various compounds to inhibit PKC in vitro does not correlate with their inhibitory effects in intact cells and (2) that platelet activation induced by various PKC activators exhibits differential PKC-inhibitor sensitivity.  相似文献   

7.
We investigated the effect of agents which raise intracellular cyclic AMP (cAMP) and protein kinase C activators on the production of plasminogen activator inhibitor type-2 (PAI-2) by cultured human promyelocytic leukemia cell line, PL-21. As previously reported, PMA, a protein kinase C activator, showed a strong stimulating effect on the PAI-2 production. 1-oleoyl-2-acetyl-sn-glycerol (OAG), another synthetic protein kinase C activator, also showed a stimulating effect, which was, however, much less than that of PMA. The agents which raise intracellular cAMP, dibutyryl cAMP, 8-bromo cAMP, prostaglandin E1, and 3-isobutyl-1-methyl-xanthine, little increased the PAI-2 production when tested alone, but showed significant synergistic effects with PMA or OAG. The synergistic effect between PMA and dibutyryl cAMP was further verified by SDS-PAGE followed by immunoblotting using a monoclonal antibody against the PAI-2. It is interesting that the up-regulation of PAI-2 by cAMP and the synergistic effect with PKC activators forms a contrast to the previous reported bi-directional regulation of endothelial PAI-1 secretion by PKC activator and cAMP.  相似文献   

8.
There are two known phosphorylation-mediated inactivation mechanisms for TRPC3 channels. Protein kinase G (PKG) inactivates TRPC3 by direct phosphorylation on Thr-11 and Ser-263 of the TRPC3 proteins, and protein kinase C (PKC) inactivates TRPC3 by phosphorylation on Ser-712. In the present study, we explored the relationship between these two inactivation mechanisms of TRPC3. HEK cells were first stably transfected with a PKG-expressing construct and then transiently transfected with a TRPC3-expressing construct. Addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analog of diacylglycerol (DAG), elicited a TRPC3-mediated [Ca2+]i rise in these cells. This OAG-induced rise in [Ca2+]i could be inhibited by phorbol 12-myristate 13-acetate (PMA), an agonist for PKC, in a dose-dependent manner. Importantly, point mutations at two PKG phosphorylation sites (T11A-S263Q) of TRPC3 markedly reduced the PMA inhibition. Furthermore, inhibition of PKG activity by KT5823 (1 microM) or H8 (10 microM) greatly reduced the PMA inhibition of TRPC3. These data strongly suggest that the inhibitory action of PKC on TRPC3 is partly mediated through PKG in these PKG-overexpressing cells. The importance of this scheme was also tested in vascular endothelial cells, in which PKG plays a pivotal functional role. In these cells, OAG-induced [Ca2+]i rise was inhibited by PMA, which activates PKC, and by 8-BrcGMP and S-nitroso-N-acetylpenicillamine (SNAP), both of which activate PKG. Importantly, the PMA inhibition on OAG-induced [Ca2+]i rise was significantly reduced by PKG inhibitor KT5823 (1 microM) or DT-3 (500 nM), suggesting an important role of PKG in the PMA-induced inhibition of TRPC channels in native endothelial cells.  相似文献   

9.
Trimeresurus wagleri venom is the most potent inducer of platelet aggregation among the seven Trimeresurus snake venoms tested. By means of CM-Sephadex C-50 column chromatography, T. wagleri venom was separated into 19 fractions. Fraction XVI possessed the strongest aggregating activity and was further purified by Sephadex G-75 and on heparin-agarose columns, and finally Triwaglerin, with a molecular weight of 68000, was obtained. Its aggregating and ATP-releasing activity was dose-dependent and 10-times more potent than the crude venom. Triwaglerin was devoid of any of the enzymatic activities possessed by the crude venom. Triwaglerin-induced aggregation was not affected by indomethacin, creatine phosphate/creatine phosphokinase (CP/CPK), platelet-activating factor (PAF) antagonists, verapamil or heparin, but was inhibited completely by mepacrine, imipramine and forskolin and markedly by tetracaine and sodium nitroprusside. Thromboxane B2 formation caused by Triwaglerin was suppressed by mepacrine, imipramine and indomethacin. R59022 and TMB-8 caused a synergistic inhibitory effect against Triwaglerin-induced aggregation. These data suggest that Triwaglerin activates platelets in a unique action which is independent of formation of thromboxane A2 and PAF, or release of ADP.  相似文献   

10.
Human T cell activation by phorbol esters and diacylglycerol analogues   总被引:5,自引:0,他引:5  
Activation of protein kinase C (PKC), by the phorbol ester PMA, or the membrane-permeable diacylglycerol 1-oleoyl 2-acetylglycerol (OAG), had different effects on the proliferation-associated responses of a more than 99% pure population of human T cells. Treatment with PMA or OAG caused down-regulation of the TCR-CD3 complex, but only PMA, in combination with ionomycin, was capable of stimulating IL-2R expression and proliferation. Immunocytochemical staining with antisera specific for the PKC subspecies alpha, beta I, beta II, and gamma showed that untreated resting T cells normally coexpress alpha, beta I, and beta II PKC subspecies, which are distributed diffusely throughout the cell, with some localization around the periphery of the nucleus. There was no difference between the responses of these PKC subspecies to OAG and PMA, redistributing, after 10 min of treatment, to a discrete focal area within the cell. Treatment with OAG resulted in transient redistribution of PKC, maximal at 10 min, while in PMA-stimulated cells, the PKC redistribution was prolonged, persisting for at least 24 h. The results suggest that the difference in cellular response to treatment with PMA and OAG is not a consequence of differential activation of various PKC subspecies.  相似文献   

11.
PKC、PKA和TPK在血小板激活中的作用   总被引:1,自引:0,他引:1  
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。  相似文献   

12.
Multivalent antigen that is capable of binding to and crosslinking the IgE receptors on rat basophilic leukemia (RBL) cells, induces a rapid and sustained rise in the content of filamentous actin. This reorganization of the actin may be responsible for changes in cellular morphology during the degranulation process. The antigen-stimulated polymerization of actin can be blocked in a dose-dependent manner by protein kinase inhibitors which also block degranulation. Conversely, reagents such as PMA, 1,2-dioctanoyl-sn-glycerol (diC8), and 1-oleoyl-2-acetyl-glycerol (OAG) which stimulate protein kinase C (PKC) also activate the rise in F-actin, although they have no effect on degranulation by themselves. The actin response which can be stimulated by the PKC activators can also be blocked by protein kinase inhibitors indicating that the PMA- and OAG-induced response is probably through activation of a protein kinase. Depletion of PKC activity through long term (20 h) exposure of RBL cells to PMA, also inhibited the F-actin response when the cells were stimulated with either multivalent antigen or OAG. External Ca++, which is an absolute requirement for degranulation, is not necessary for the rise in F-actin, but may modulate the response. Furthermore, ionomycin, which induces a large Ca++ influx, does not stimulate the F-actin increase even at doses that cause degranulation. These results suggest that activation of a protein kinase, such as PKC, may be responsible for signaling the polymerization of actin in RBL cells and that a rise in intracellular Ca++ is neither necessary nor sufficient for this response.  相似文献   

13.
Ly-1, the murine lymphocyte differentiation antigen CD5, is phosphorylated constitutively in vivo. This phosphorylation is enhanced by phorbol 12-myristate 13-acetate (PMA) treatment, but not by concanavalin A, Ca2+ ionophore or dibutyryl cAMP. Prolonged PMA treatment abolished PMA-induced Ly-1 phosphorylation but not constitutive phosphorylation, suggesting that protein kinase C (PKC) is responsible for this enhanced phosphorylation, but not the basal phosphorylation of Ly-1. Ly-1 is phosphorylated by PKC added to membranes, further supporting a role for protein kinase C in the in vivo phosphorylation of Ly-1.  相似文献   

14.
The prostaglandin endoperoxide G2 caused rapid aggregation and relase of ADP and [14C]serotonin in human platelets. Since the presence of the ADP phosphorylating system creatine phosphate/creatine phosphokinase markedly inhibited the aggregation caused by the endoperoxide, this effect seemed to be mediated mainly by ADP, which is instantaneously released by the endoperoxide. The prostaglandin G2 counteracted the increasing effect of prostaglandin E1 on the adenosine 3':5'-monophosphate (cAMP) levels in platelet-rich plasma. This effect of prostaglandin G2 was only observed when ADP was released by the endoperoxide. This finding indicates that the effect of prostaglandin G2 on the cAMP levels in platelet-rich plasma is principally mediated by ADP. The rapid release of ADP by prostaglandin G2 and the time courses for the effects of the endoperoxide and ADP on the level of cAMP give further evidence for this hypothesis. ADP also caused primary aggregation in the presence of indomethacin, and prostaglandin synthesis inhibitors did not influence the decreasing effect of ADP on the cAMP levels. N2,O2-Dibutyrylguanosine 3':5'-monophosphate did not influence the aggregation and release-reaction caused by ADP and no changes of the cGMP levels were observed after addition of prostaglandin G2.  相似文献   

15.
The mechanisnms involved in platele aggregation by a monoclonal antibody (mAb) P256 specific for the GPIIb-IIIa complex was investigated following metabolic 32P labelling of platelets. When compared with thrombin, inositol phosphates (InsP) production during P256-induced activation was delayed and no apparent peak, but a small and sustained production of [32P]-Ins(1,4,5)P3 and [32P]-Ins(1,4,5)P4, was observed between 20 and 90 s. [32P]-Ins(1,3,4)P3 was aslo produced with a manimumafter 90 s. Addition of ADP scavenger creatine phosphate/creatine phosphokinase (CP/CPK) and of the cycloxygenase inhibitor aspirin together with P256 almost totally abolished InsPP formation, whereas platelet aggregation and protein phosphorylation were partially inhibited. F(ab′)2 fragments of P256 also aggregated platelets but to a smaller extent than IgG, and without any measurable InsPs. To characterize further P-256-induced activation, the phosphorylation of p43, the main substrate of protein kinase C (PKC) and the phosphorylation of tyrosine protein (P-Tyr) was also studied. PKC activation was smaller with P256-IgG than with thrombin but both thrombin and P265-IgG induced a similar profile of P-Tyr involving seven major bands, whereas P265-F(ab′)2 only occasionally activated PKC but always significantly phosphorylated a 64,000 molecular P-Tyr. The data indicate that the binding of P256 to HPIIb,-IIIa, in contrast with thrombin, does not initially lead directly to the activation of the phosphoinositide phospholipase C to produce InsP's but rather involves the activation of protein kinases and also both fragments F(ab′)2 and Fc play a specific role in the platelet responses to the mAb. Only the crosstalk between the two pathways evoked by F(ab′)2 Fc respectively allows the activation of all platelet activation systems.  相似文献   

16.
Preincubation of aspirin-treated human platelets with butylated hydroxytoluene (BHT) inhibits secretion, aggregation, and protein phosphorylation induced by dioctanoylglycerol or phorbol 12-myristate 13-acetate (PMA). BHT alone elicits a rapid and transient phosphorylation of a 47-kDa protein, which is indistinguishable from the well-recognized major substrate of protein kinase C (PKC). Inhibition of diacylglycerol- or PMA-induced platelet activation is also observed after decay to the basal level of the BHT-evoked phosphorylation of the 47-kDa protein. By contrast BHT potentiates platelet responses elicited by the calcium ionophore ionomycin. In the presence of the PKC inhibitor staurosporine BHT fails to increase the ionomycin-promoted platelet aggregation, indicating that its effect occurs through a PKC activation, even if no correlation with the 47-kDa protein phosphorylation is observed. BHT does not significantly modify the affinity of protein kinase C purified from calf brain for Ca2+ or dioctanoylglycerol. It is concluded that: (a) a short exposure of platelets to BHT induces an activation, whereas a long exposure an inhibition of PKC, (b) at variance with diacylglycerols BHT decreases the platelet responses promoted by subsequent challenge with PKC activators themselves, and (c) similarly to other PKC activators BHT potentiates the cellular response elicited by calcium ionophores most likely by activating the phospholipase A2.  相似文献   

17.
This study was undertaken to evaluate whether a link exists between the activation of protein kinase C (PKC), operation of Na(+)/H(+) exchanger (NHE), cell swelling and serotonin (5-HT) secretion in porcine platelets. Activation of platelets by thrombin or phorbol 12-myristate 13-acetate (PMA), a PKC activator, initiated a rapid rise in the activity of Na(+)/H(+) exchanger and secretion of 5-HT. Both thrombin- and PMA-evoked activation of Na(+)/H(+) exchanger was less pronounced in the presence of ethyl-isopropyl-amiloride (EIPA), an NHE inhibitor, and by GF 109203X, a PKC inhibitor. Monensin (simulating the action of NHE) caused a dose-dependent release of 5-HT that was not abolished by GF 109203X or EGTA. Lack of Na(+) in the suspending medium reduced thrombin-, PMA-, and monensin-evoked 5-HT secretion. GF 109203X nearly completely inhibited 5-HT release induced by PMA-, partly that induced by thrombin, and had no effect on 5-HT release induced by monensin. EIPA partly inhibited 5-HT release induced by thrombin and nearly totally that evoked by PMA. Electronic cell sizing measurements showed an increase in mean platelet volume upon treatment of cells with monensin, PMA or thrombin. The PMA- and thrombin-evoked rise in mean platelet volume was strongly reduced in the presence of EIPA. As judged by optical swelling assay monensin and PMA produced a rapid rise in platelet volume. The swelling elicited by PMA was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Hypoosmotically evoked platelet swelling did not affect platelet aggregation but significantly potentiated thrombin-evoked release of 5-HT and ATP. Taken together, these results show that in porcine platelets PKC may promote 5-HT secretion through the activation of NHE. It is hypothesized that enhanced Na(+)/H(+) antiport may result in a rise in cell membrane tension (due to cell swelling) which in turn facilitates fusion of secretory granules with the plasma membrane leading to 5-HT secretion.  相似文献   

18.
Jakobs, Bauer & Watanabe [(1985) Eur. J. Biochem. 151, 425-430] reported that treatment of platelets with phorbol 12-myristate 13-acetate (PMA) prevented GTP- and agonist-induced inhibition of adenylate cyclase in membranes from the platelets. This was attributed to the phosphorylation of the inhibitory guanine nucleotide-binding protein (Gi) by protein kinase C. In the present study, the effects of PMA on cyclic [3H]AMP formation and protein phosphorylation were studied in intact human platelets labelled with [3H]adenine and [32P]Pi. Incubation mixtures contained indomethacin to block prostaglandin synthesis, phosphocreatine and creatine kinase to remove ADP released from the platelets, and 3-isobutyl-1-methylxanthine to inhibit cyclic AMP phosphodiesterases. Under these conditions, PMA partially inhibited the initial formation of cyclic [3H]AMP induced by prostaglandin E1 (PGE1), but later enhanced cyclic [3H]AMP accumulation by blocking the slow decrease in activation of adenylate cyclase that follows addition of PGE1. PMA had more marked and exclusively inhibitory effects on cyclic [3H]AMP formation induced by prostaglandin D2 and also inhibited the action of forskolin. Adrenaline, high thrombin concentrations and, in the absence of phosphocreatine and creatine kinase, ADP inhibited cyclic [3H]AMP formation induced by PGE1. The actions of adrenaline and thrombin were attenuated by PMA, but that of ADP was little affected, suggesting differences in the mechanisms by which these agonists inhibit adenylate cyclase. sn-1,2-Dioctanoylglycerol (diC8) had effects similar to those of PMA. The actions of increasing concentrations of PMA or diC8 on the modulation of cyclic [3H]AMP formation by PGE1 or adrenaline correlated with intracellular protein kinase C activity, as determined by 32P incorporation into the 47 kDa substrate of the enzyme. Parallel increases in phosphorylation of 20 kDa and 39-41 kDa proteins were also observed. Platelet-activating factor, [Arg8]vasopressin and low thrombin concentrations, all of which inhibit adenylate cyclase in isolated platelet membranes, did not affect cyclic [3H]AMP formation in intact platelets. However, the activation of protein kinase C by these agonists was insufficient to account for their failure to inhibit cyclic [3H]AMP formation. Moreover, high thrombin concentrations simultaneously activated protein kinase C and inhibited cyclic [3H]AMP formation. The results show that, in the intact platelet, the predominant effects of activation of protein kinase C on adenylate cyclase activity are inhibitory, suggesting actions additional to inactivation of Gi.  相似文献   

19.
Yao XH  Wang PY  Pang YZ  Su JY  Tang CS 《生理学报》1998,50(2):188-192
本工作在二磷酸腺苷(ADP)活化的大鼠血小板上,观察精-甘-天冬-丝上肽(RGDS肽)对血小板聚集、蛋白磷酸化、蛋白激酶C和丝裂素活化蛋白激酶活性的影响。结果发现,50μmol/LADP引起血小板聚集时,蛋白激酶C(PKC0及丝裂经蛋白激酶(MAPK)活性增加,并引起95和66kD蛋白磷酸化。应用50,100和200μmol/LRGDS肽与基共同孵育,呈浓度依赖地抑制ADP引起的血小板聚集和对PK  相似文献   

20.
The mechanisms by which phorbol 12-myristate 13-acetate (PMA) and cAMP attenuate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) induced by ligation of the T-cell antigen receptor complex (TCR) was studied in the human Jurkat T-cell line. It has previously been shown that stimulation of Jurkat cells with antibodies to CD3, components of the TCR, elicits a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1, the predominant PLC isozyme in Jurkat cells, at multiple tyrosine residues and that such tyrosine phosphorylation leads to activation of PLC-gamma 1. Prior incubation of Jurkat cells with PMA or forskolin, which increases intracellular cAMP concentrations, prevented tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of PtdIns 4,5-P2 induced by ligation of CD3. Dose-response curves of PMA and of forskolin for the inhibition of PLC-gamma 1 tyrosine phosphorylation and of PtdIns 4,5-P2 hydrolysis were similar. These results suggest that the inhibition of PtdIns 4,5-P2 hydrolysis by PMA and cAMP is attributable to reduced tyrosine phosphorylation of PLC-gamma 1. Treatment of Jurkat cells with PMA or forskolin stimulated the phosphorylation of PLC-gamma 1 at serine 1248. PMA treatment also elicited the phosphorylation of PLC-gamma 1 at an unidentified serine site. Phosphopeptide map analysis indicated that the sites of PLC-gamma 1 phosphorylated in Jurkat cells treated with PMA and forskolin are the same as those phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), respectively. Stimulation of Jurkat cells with antibodies to CD3 also elicited phosphorylation of PLC-gamma 1 at serine 1248 and at the unidentified serine site phosphorylated in PLC-gamma 1 from PMA-treated cells. Thus, phosphorylation of PLC-gamma 1 by PKC or PKA at serine 1248 may modulate the interaction of PLC-gamma 1 with the protein tyrosine kinase or the protein tyrosine phosphatase; this altered interaction may, at least in part, be responsible for the decreased tyrosine phosphorylation of PLC-gamma 1 seen in PMA- and forskolin-treated Jurkat cells. Furthermore, in the absence of PMA, activation of PKC by diacylglycerol provides a negative feedback signal responsible for reducing the phosphotyrosine contents of PLC-gamma 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号