首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of hepatocyte growth factor/scatter factor (HGF/SF) on the proliferation of human skin fibroblasts was examined. At concentrations above 1.0 ng/ml, both native and recombinant human HGF/SF stimulated the DNA synthesis determined by [3H]thymidine incorporation, which was completely inhibited by an anti-human HGF/SF monoclonal antibody. The maximal DNA synthesis in the treated cells was nearly twice that in untreated cells. HGF/SF also caused an increase in the labelling index, DNA content and cell number. The effect of HGF/SF was more than additive to the maximal effect of insulin and epidermal growth factor, other mitogens for the fibroblasts. These results indicate that human skin fibroblasts are sensitive to the mitogenic action of HGF/SF.  相似文献   

2.
3.
The mTORC1 complex (mammalian target of rapamycin (mTOR)-raptor) is modulated by mitogen-activated protein (p44/42 MAP) kinases (p44/42) through phosphorylation and inactivation of the tuberous sclerosis complex. However, a role for mTORC1 signaling in modulating activation of p44/42 has not been reported. We show that in two cancer cell lines regulation of the p44/42 MAPKs is mTORC1-dependent. In Rh1 cells rapamycin inhibited insulin-like growth factor-I (IGF-I)-stimulated phosphorylation of Thr(202) but not Tyr(204) and suppressed activation of p44/42 kinase activity. Down-regulation of raptor, which inhibits mTORC1 signaling, had a similar effect to rapamycin in blocking IGF-I-stimulated Tyr(204) phosphorylation. Rapamycin did not block maximal phosphorylation of Tyr(204) but retarded the rate of dephosphorylation of Tyr(204) following IGF-I stimulation. IGF-I stimulation of MEK1 phosphorylation (Ser(217/221)) was not inhibited by rapamycin. Higher concentrations of rapamycin (> or =100 ng/ml) were required to inhibit epidermal growth factor (EGF)-induced phosphorylation of p44/42 (Thr(202)). Rapamycin-induced inhibition of p44/42 (Thr(202)) phosphorylation by IGF-I was reversed by low concentrations of okadaic acid, suggesting involvement of protein phosphatase 2A (PP2A). Both IGF-I and EGF caused dissociation of PP2A catalytic subunit (PP2Ac) from p42. Whereas low concentrations of rapamycin (1 ng/ml) inhibited dissociation of PP2Ac after IGF-I stimulation, it required higher concentrations (> or =100 ng/ml) to block EGF-induced dissociation, consistent with the ability for rapamycin to attenuate growth factor-induced activation of p44/42. The effect of rapamycin on IGF-I or insulin activation of p44/42 was recapitulated by amino acid deprivation. Rapamycin effects altering the kinetics of p44/42 phosphorylation were completely abrogated in Rh1mTORrr cells that express a rapamycin-resistant mTOR, whereas the effects of amino acid deprivation were similar in Rh1 and Rh1mTORrr cells. These results indicate complex regulation of p44/42 by phosphatases downstream of mTORC1. This suggests a model in which mTORC1 modulates the phosphorylation of Thr(202) on p44/42 MAPKs through direct or indirect regulation of PP2Ac.  相似文献   

4.
The present study has focused on the role of the 42- and 44-kDa mitogen-activated protein kinases (p42/44 MAPKs) and the 38-kDa mitogen-activated protein kinase (p38 MAPK) in the proliferation of the pancreatic beta-cell line MIN6. MIN6 beta-cell proliferation was assessed by measuring 5-bromo-2'-deoxyuridine (BrdU) incorporation into cellular DNA. Inhibition of both the p42/44 MAPK pathway using the MEK inhibitor PD098059 (PD) and the p38 MAPK pathway using the p38 inhibitor SB203580 (SB) caused a marked, concentration-dependent reduction in the BrdU immunostaining observed in the presence of 15% FCS when assessed using fluorescence immunocytochemistry. These data provide direct evidence of a role for p42/44 MAPKs in the mitogenic response of MIN6 beta-cells to FCS. Furthermore, these data also suggest a novel role for the p38 MAPK pathway in MIN6 beta-cell proliferation.  相似文献   

5.
Insulin-like growth factor-binding protein-3 (IGFBP-3) is inhibitory to the growth of many breast cancer cells in vitro; however, a high level of expression of IGFBP-3 in breast tumors correlates with poor prognosis, suggesting that IGFBP-3 may be associated with growth stimulation in some breast cancers. We have shown previously in MCF-10A breast epithelial cells that chronic activation of Ras-p44/42 mitogen-activated protein (MAP) kinase confers resistance to the growth-inhibitory effects of IGFBP-3 (Martin, J. L., and Baxter, R. C. (1999) J. Biol. Chem. 274, 16407-16411). Here we show that, in the same cell line, IGFBP-3 potentiates DNA synthesis and cell proliferation stimulated by epidermal growth factor (EGF), a potent activator of Ras. A mutant of IGFBP-3, which fails to translocate to the nucleus and has reduced ability to cell-associate, similarly enhanced EGF action in these cells. By contrast, the structurally related IGFBP-5, which shares many functional features with IGFBP-3, was slightly inhibitory to DNA synthesis in the presence of EGF. IGFBP-3 primes MCF-10A cells to respond to EGF because pre-incubation caused a similar degree of EGF potentiation as co-incubation. In IGFBP-3-primed cells, EGF-stimulated EGF receptor phosphorylation at Tyr-1068 was increased relative to unprimed cells, as was phosphorylation and activity of p44/42 and p38 MAP kinases, but not Akt/PKB. Partial blockade of the p44/42 and p38 MAP kinase pathways abolished the potentiation by IGFBP-3 of EGF-stimulated DNA synthesis. Collectively, these findings indicate that IGFBP-3 enhances EGF signaling and proliferative effects in breast epithelial cells via increased EGF receptor phosphorylation and activation of p44/42 and p38 MAP kinase signaling pathways.  相似文献   

6.
Fibroblast growth factor-2 (FGF-2) interacts with a dual receptor system consisting of tyrosine kinase receptors and heparan sulfate proteoglycans (HSPGs). In rat mammary fibroblasts, FGF-2 stimulated DNA synthesis and induced a sustained phosphorylation of p42/44(MAPK) and of its downstream target, p90(RSK). Moreover, FGF-2 also stimulated the transient degradation of IkappaBalpha and IkappaBbeta. PD098059, a specific inhibitor of p42/44(MAPK) phosphorylation, inhibited FGF-2-stimulated DNA synthesis, phosphorylation of p42/44(MAPK) and p90(RSK), and degradation of IkappaBbeta. In contrast, in chlorate-treated and hence sulfated glycosaminoglycan-deficient cells, FGF-2 was unable to stimulate DNA synthesis. However, FGF-2 was able to trigger a transient phosphorylation of both p42/44(MAPK) and p90(RSK), which peaked at 15 min and returned to control levels at 30 min. In these sulfated glycosaminoglycan-deficient cells, no degradation of IkappaBalpha and IkappaBbeta was observed after FGF-2 addition. However, in chlorate-treated cells, the addition of heparin or purified HSPGs simultaneously with FGF-2 restored DNA synthesis, the sustained phosphorylation of p42/44(MAPK) and p90(RSK), and the degradation of IkappaBalpha and IkappaBbeta. These results suggest that the HSPG receptor for FGF-2 not only influences the outcome of FGF-2 signaling, e.g. cell proliferation, but importantly regulates the immediate-early signals generated by this growth factor.  相似文献   

7.
8.
We have shown previously that phenol/water extracts derived from two novel Treponema species, Treponema maltophilum, and Treponema brennaborense, resembling lipoteichoic acid (LTA), induce cytokines in mononuclear cells. This response was lipopolysaccharide binding-protein (LBP)-dependent and involved Toll-like receptors (TLRs). Here we show that secretion of tumor necrosis factor-alpha induced by Treponema culture supernatants and extracted LTA was paralleled by an LBP-dependent phosphorylation of mitogen-activated protein kinases (MAPKs) p42 and p44, and p38, as well as the stress-activated protein kinases c-Jun N-terminal kinases 1 and 2. Phosphorylation of p42/44 correlated with an increase of activity, and tumor necrosis factor-alpha levels were significantly reduced by addition of inhibitors of p42/44 and p38, PD 98059 and SB 203580, respectively. Treponeme LTA differed from bacterial lipopolysaccharide regarding time course of p42/44 phosphorylation, exhibiting a prolonged activation of MAPKs. Furthermore, MAPK activation and cytokine induction failed to be strictly correlated. Involvement of TLR-4 for phosphorylation of p42/44 was shown employing the neutralizing anti-murine TLR-4 antibody MTS 510. In TLR-2-negative U373 cells, the compounds studied differed regarding MAPK activation with T. maltophilum leading to a stronger activation. In summary, the data presented here show that treponeme LTA are able to activate the MAPK and stress-activated protein kinase pathway involving LBP and TLR-4.  相似文献   

9.
This study uses human alveolar macrophages to determine whether activation of a phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) is linked to activation of the p42/44 (ERK) kinases by LPS. LPS-induced ERK kinase activation was inhibited by tricyclodecan-9-yl xanthogenate (D609), a relatively specific inhibitor of PC-PLC. LPS also increased amounts of diacylglycerol (DAG), and this increase in DAG was inhibited by D609. LPS induction of DAG was, at least in part, derived from PC hydrolysis. Ceramide was also increased in LPS-treated alveolar macrophages, and this increase in ceramide was inhibited by D609. Addition of exogenous C2 ceramide or bacterial-derived sphingomyelinase to alveolar macrophages increased ERK kinase activity. LPS also activated PKC zeta, and this activation was inhibited by D609. LPS-activated PKC zeta phosphorylated MAP kinase kinase, the kinase directly upstream of the ERK kinases. LPS-induced cytokine production (RNA and protein) was also inhibited by D609. As an aggregate, these studies support the hypothesis that one way by which LPS activates the ERK kinases is via activation of PC-PLC and that activation of a PC-PLC is an important component of macrophage activation by LPS.  相似文献   

10.
Substance P (SP) released from sensory nerve endings in the airways induces several responses including cell proliferation. However, the mechanisms were not completely understood in tracheal smooth muscle cells (TSMCs). We therefore investigated the effect of SP on cell proliferation and activation of p42/p44 mitogen-activated protein kinase (MAPK) in these cells. SP stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Both DNA synthesis and phosphorylation of MAPK in response to SP were attenuated by pretreatment with pertussis toxin, genistein, D609, U73122, staurosporine, removal of Ca(2+) by BAPTA/AM plus EGTA, PD98059, and SB202190. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by SP and PDGF-BB. These results conclude that the mitogenic effect of SP was mediated through the activation of Ras/Raf/MEK/MAPK pathway, which was modulated by PC-PLC, PI-PLC, Ca(2+), and PKC in cultured human TSMCs.  相似文献   

11.
12.
13.
14.
Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.  相似文献   

15.
16.
Like other cellular models, endothelial cells in cultures stop growing when they reach confluence, even in the presence of growth factors. In this work, we have studied the effect of cellular contact on the activation of p42/p44 mitogen-activated protein kinase (MAPK) by growth factors in mouse vascular endothelial cells. p42/p44 MAPK activation by fetal calf serum or fibroblast growth factor was restrained in confluent cells in comparison with the activity found in sparse cells. Consequently, the induction of c-fos, MAPK phosphatases 1 and 2 (MKP1/2), and cyclin D1 was also restrained in confluent cells. In contrast, the activation of Ras and MEK-1, two upstream activators of the p42/p44 MAPK cascade, was not impaired when cells attained confluence. Sodium orthovanadate, but not okadaic acid, restored p42/p44 MAPK activity in confluent cells. Moreover, lysates from confluent 1G11 cells more effectively inactivated a dually phosphorylated active p42 MAPK than lysates from sparse cells. These results, together with the fact that vanadate-sensitive phosphatase activity was higher in confluent cells, suggest that phosphatases play a role in the down-regulation of p42/p44 MAPK activity. Enforced long-term activation of p42/p44 MAPK by expression of the chimera DeltaRaf-1:ER, which activates the p42/p44 MAPK cascade at the level of Raf, enhanced the expression of MKP1/2 and cyclin D1 and, more importantly, restored the reentry of confluent cells into the cell cycle. Therefore, inhibition of p42/p44 MAPK activation by cell-cell contact is a critical step initiating cell cycle exit in vascular endothelial cells.  相似文献   

17.
《The Journal of cell biology》1995,129(5):1411-1419
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.  相似文献   

18.
Adrenocortical differentiated functions are under the control of both endocrine hormones such as ACTH and local factors such as transforming growth factor beta (TGF beta) or basic fibroblast growth factor (bFGF). Besides their regulatory actions on the synthesis of corticosteroids, these two classes of factors also exert some important effects on the cellular environment. We have examined here the regulation by ACTH and TGF beta of adrenocortical cell proteoglycan synthesis and secretion. Under basal conditions, adrenocortical cells synthesized and secreted several species of sulfated proteoglycans, 80% of them being recovered in solution in the culture medium. When analyzed by ion exchange chromatography, the cell extracts and the media from cells metabolically labeled with 35S-sulfate were found to contain two and three species of radioactive sulfated proteoglycans, respectively. All species were proteoheparan-sulfates. Treatment of adrenocortical cells with TGF beta 1 or ACTH resulted in a significant increase of the incorporation of 35S into both secreted and cell-associated proteoglycans. ACTH stimulated more than three times the amount of secreted proteoglycans eluting from DEAE-Trisacryl as peak B, whereas TGF beta preferentially increased the amount of peak C. No important modification of the size of the synthesized proteoglycans was observed. The subpopulation of heparan sulfate proteoglycans capable to bind bFGF was also largely increased after ACTH or TGF beta treatment and paralleled the variation in overall proteoheparan sulfate synthesis. Thus those effects of TGF beta and ACTH on proteoglycan synthesis may participate in an increased ability of adrenocortical cells to bind and respond to bFGF.  相似文献   

19.
The proteasome is emerging as a target for cancer therapy because small molecule inhibitors of its catalytic activity induce apoptosis in both in vitro and in vivo models of human malignancies and are proving to have efficacy in early clinical trials. To further elucidate the mechanism of action of these inhibitors, their impact on signaling through the p44/42 mitogen-activated protein kinase (MAPK) pathway was studied. Proteasome inhibition with either carbobenzoxy-leucyl-leucyl-phenylalaninal or lactacystin led to a loss of dually phosphorylated, activated p44/42 MAPK in A1N4-myc human mammary and MDA-MB-231 breast carcinoma cells in a dose- and time-dependent fashion. This correlated with an induction of the dual specificity MAPK phosphatases (MKP)-1 and -2, and blockade of MKP induction using either actinomycin D or Ro-31-8220 significantly decreased loss of activated p44/42 MAPK. Inhibition of p44/42 MAPK signaling by use of the MAPK kinase inhibitors PD 98059 or U0126, or by use of a dominant negative MAPK construct, enhanced proteasome inhibitor-mediated apoptosis. Conversely, activation of MAPK by epidermal growth factor, or use of a mutant MAPK resistant to MKP-mediated dephosphorylation, inhibited apoptosis. These studies support a role for inactivation of signaling through the p44/42 MAPK pathway in proteasome inhibitor-mediated apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号