首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoaspartyl dipeptidase (IAD) is a member of the amidohydrolase superfamily and catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. Structural studies of the wild-type enzyme have demonstrated that the active site consists of a binuclear metal center positioned at the C-terminal end of a (beta/alpha)(8)-barrel domain. Steady-state kinetic parameters for the hydrolysis of beta-aspartyl dipeptides were obtained at pH 8.1. The pH-rate profiles for the hydrolysis of beta-Asp-Leu were obtained for the Zn/Zn-, Co/Co-, Ni/Ni-, and Cd/Cd-substituted forms of IAD. Bell-shaped profiles were observed for k(cat) and k(cat)/K(m) as a function of pH for all four metal-substituted forms. The pK(a) of the group that must be unprotonated for catalytic activity varied according to the specific metal ion bound in the active site, whereas the pK(a) of the group that must be protonated for catalytic activity was relatively independent of the specific metal ion present. The identity of the group that must be unprotonated for catalytic activity was consistent with the hydroxide that bridges the two divalent cations of the binuclear metal center. The identity of the group that must be protonated for activity was consistent with the free alpha-amino group of the dipeptide substrate. Kinetic constants were obtained for the mutant enzymes at conserved residues Glu77, Tyr137, Arg169, Arg233, Asp285, and Ser289. The catalytic properties of the wild-type and mutant enzymes, coupled with the X-ray crystal structure of the D285N mutant complexed with beta-Asp-His, are consistent with a chemical reaction mechanism for the hydrolysis of dipeptides that is initiated by the polarization of the amide bond via complexation to the beta-metal ion of the binuclear metal center. Nucleophilic attack by the bridging hydroxide is facilitated by abstraction of its proton by the side chain carboxylate of Asp285. Collapse of the tetrahedral intermediate and cleavage of the carbon-nitrogen bond occur with donation of a proton from the protonated form of Asp285.  相似文献   

2.
C. G. Cupples  J. H. Miller 《Genetics》1988,120(3):637-644
Forty-nine amino acid substitutions were made at four positions in the Escherichia coli enzyme β-galactosidase; three of the four targeted amino acids are thought to be part of the active site. Many of the substitutions were made by converting the appropriate codon in lacZ to an amber codon, and using one of 12 suppressor strains to introduce the replacement amino acid. Glu-461 and Tyr-503 were replaced, independently, with 13 amino acids. All 26 of the strains containing mutant enzymes are Lac(-). Enzyme activity is reduced to less than 10% of wild type by substitutions at Glu-461 and to less than 1% of wild type by substitutions at Tyr-503. Many of the mutant enzymes have less than 0.1% wild-type activity. His-464 and Met-3 were replaced with 11 and 12 amino acids, respectively. Strains containing any one of these mutant proteins are Lac(+). The results support previous evidence that Glu-461 and Tyr-503 are essential for catalysis, and suggest that His-464 is not part of the active site. Site-directed mutagenesis was facilitated by construction of an f1 bacteriophage containing the complete lacZ gene on a single EcoRI fragment.  相似文献   

3.
Porter TN  Li Y  Raushel FM 《Biochemistry》2004,43(51):16285-16292
Dihydroorotase (DHO) is a zinc metalloenzyme that functions in the pathway for the biosynthesis of pyrimidine nucleotides by catalyzing the reversible interconversion of carbamoyl aspartate and dihydroorotate. A chemical mechanism was proposed on the basis of an analysis of the effects of pH, metal substitution, solvent isotope effects, mutant proteins, and alternative substrates on the enzyme-catalyzed reaction. The pH-rate profiles for the hydrolysis of dihydroorotate or thiodihydroorotate demonstrated that a single group from the enzyme must be unprotonated for maximal catalytic activity. Conversely, the pH-rate profiles for the condensation of carbamoyl aspartate to dihydroorotate showed that a single group from the enzyme must be protonated for maximal catalytic activity. The native zinc ions within the active site of DHO were substituted with cobalt or cadmium by reconstitution of the apoenzyme with divalent cations in the presence of bicarbonate. The ionizations observed in the pH-rate profiles were dependent on the specific metal ion bound to the active site. Mutation of the residue (Asp-250) that hydrogen bonds to the bridging hydroxide (or water) resulted in the loss of catalytic activity. These results are consistent with the formation of a hydroxide bridge between the two divalent cations that functions as the nucleophile during the hydrolysis of dihydroorotate. In addition, Asp-250 is postulated to shuttle the proton from the bridging hydroxide to the leaving group amide during hydrolysis of dihydroorotate. The X-ray crystal structure of DHO showed that the exocyclic alpha-carboxylate of dihydroorotate is bound to the protein via electrostatic interactions with Arg-20, Asn-44, and His-254. Mutation of these residues resulted in the loss of catalytic activity, indicating that these residues are critical for substrate recognition. The thio analogue of dihydroorotate was found to be a good substrate of the enzyme. A comprehensive chemical mechanism for DHO was proposed on the basis of the experimental findings in this study and the X-ray crystal structure.  相似文献   

4.
The metallo-beta-lactamases require divalent cations such as zinc or cadmium for hydrolyzing the amide bond of beta-lactam antibiotics. The crystal structure of the Zn2+ -bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam bond of the substrate. It was previously reported that the replacement of the active site Cys181 by a serine residue severely impaired catalysis while atomic absorption measurements indicated that binding of the two zinc ions remained intact. Contradicting data emerge from recent mass spectrometry results, which show that only a single zinc ion binds to the C181S metallo-beta-lactamase. In the current study, the C181S mutant enzyme was examined at the atomic level by determining the crystal structure at 2.6 A resolution. The overall structure of the mutant enzyme is the same as that of the wild-type enzyme. At the mutation site, the side chain of Ser181 occupies the same position as that of the side chain of Cys181 in the wild-type protein. One zinc ion, Zn1, is present in the crystal structure; however, the site of the second zinc ion, Zn2 is unoccupied. A water molecule is associated with Zn1, reminiscent of the hydroxide seen in the structure of the wild-type enzyme but farther from the metal. The position of the water molecule is off the plane of the carboxylate group of Asp103; therefore, the water molecule may be less nucleophilic than a water molecule which is coplanar with the carboxylate group.  相似文献   

5.
D J Weber  A K Meeker  A S Mildvan 《Biochemistry》1991,30(25):6103-6114
The mechanism of the phosphodiesterase reaction catalyzed by staphylococcal nuclease is believed to involve concerted general acid-base catalysis by Arg-87 and Glu-43. The mutual interactions of Arg-87 and Glu-43 were investigated by comparing kinetic and thermodynamic properties of the single mutant enzymes E43S (Glu-43 to Ser) and R87G (Arg-87 to Gly) with those of the double mutant, E43S + R87G, in which both the basic and acidic functions have been inactivated. Denaturation studies with guanidinium chloride, CD, and 600-MHz 1D and 2D proton NMR spectra, indicate all enzyme forms to be predominantly folded in absence of the denaturant and reveal small antagonistic effects of the E43S and R87G mutations on the stability and structure of the wild-type enzyme. The free energies of binding of the divalent cation activator Ca2+, the inhibitor Mn2+, and the substrate analogue 3',5'-pdTp show simple additive effects of the two mutations in the double mutant, indicating that Arg-87 and Glu-43 act independently to facilitate the binding of divalent cations and of 3',5'-pdTP by the wild-type enzyme. The free energies of binding of the substrate, 5'-pdTdA, both in binary E-S and in active ternary E-Ca(2+)-S complexes, show synergistic effects of the two mutations, suggesting that Arg-87 and Glu-43 interact anticooperatively in binding the substrate, possibly straining the substrate by 1.6 kcal/mol in the wild-type enzyme. The large free energy barriers to Vmax introduced by the R87G mutation (delta G1 = 6.5 kcal/mol) and by the E43S mutation (delta G2 = 5.0 kcal/mol) are partially additive in the double mutant (delta G1+2 = 8.1 kcal/mol). These partially additive effects on Vmax are most simply explained by a cooperative component to transition state binding by Arg-87 and Glu-43 of -3.4 kcal/mol. The combination of anticooperative, cooperative, and noncooperative effects of Arg-87 and Glu-43 together lower the kinetic barrier to catalysis by 8.1 kcal/mol.  相似文献   

6.
M Lukac  R J Collier 《Biochemistry》1988,27(20):7629-7632
Directed mutagenesis was used to probe the functions of Tyr-470 and Tyr-481 of Pseudomonas aeruginosa exotoxin A (ETA) with respect to cytotoxicity, ADP-ribosylation of elongation factor 2 (EF-2), and NAD-glycohydrolase activity. Both of these residues lie in the active site cleft, close to Glu-553, a residue believed to play a direct role in catalysis of ADP-ribosylation of EF-2. Substitution of Tyr-470 with Phe caused no change in any of these activities, thus eliminating the possibility that the phenolic hydroxyl group of Tyr-470 might be directly involved in catalysis. Mutation of Tyr-481 to Phe caused an approximately 10-fold reduction in NAD:EF-2 ADP-ribosyltransferase activity and cytotoxicity but no change in NAD-glycohydrolase activity. The latter mutation did not alter the KM of NAD in the NAD-glycohydrolase reaction, which suggests that the phenolic hydroxyl of Tyr-481 does not participate in NAD binding. We hypothesize that the phenolic hydroxyl of Tyr-481 may be involved in the interaction of the toxin with substrate EF-2.  相似文献   

7.
β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism.  相似文献   

8.
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

9.
Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side-chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved, small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7 angstroms resolution. Time-resolved, small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side-chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side-chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate-binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low-activity low-affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate-binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase.  相似文献   

10.
We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank.  相似文献   

11.
gamma-Glultamylcysteine synthetase (gamma-GCS) catalyzes the first step in the de novo biosynthesis of glutathione. In trypanosomes, glutathione is conjugated to spermidine to form a unique cofactor termed trypanothione, an essential cofactor for the maintenance of redox balance in the cell. Using extensive similarity searches and sequence motif analysis we detected homology between gamma-GCS and glutamine synthetase (GS), allowing these proteins to be unified into a superfamily of carboxylate-amine/ammonia ligases. The structure of gamma-GCS, which was previously poorly understood, was modeled using the known structure of GS. Two metal-binding sites, each ligated by three conserved active site residues (n1: Glu-55, Glu-93, Glu-100; and n2: Glu-53, Gln-321, and Glu-489), are predicted to form the catalytic center of the active site, where the n1 site is expected to bind free metal and the n2 site to interact with MgATP. To elucidate the roles of the metals and their ligands in catalysis, these six residues were mutated to alanine in the Trypanosoma brucei enzyme. All mutations caused a substantial loss of activity. Most notably, E93A was able to catalyze the l-Glu-dependent ATP hydrolysis but not the peptide bond ligation, suggesting that the n1 metal plays an important role in positioning l-Glu for the reaction chemistry. The apparent K(m) values for ATP were increased for both the E489A and Q321A mutant enzymes, consistent with a role for the n2 metal in ATP binding and phosphoryl transfer. Furthermore, the apparent K(d) values for activation of E489A and Q321A by free Mg(2+) increased. Finally, substitution of Mn(2+) for Mg(2+) in the reaction rescued the catalytic deficits caused by both mutations, demonstrating that the nature of the metal ligands plays an important role in metal specificity.  相似文献   

12.
Among manganese superoxide dismutases, residues His30 and Tyr174 are highly conserved, forming part of the substrate access funnel in the active site. These two residues are structurally linked by a strong hydrogen bond between His30 NE2 from one subunit and Tyr174 OH from the other subunit of the dimer, forming an important element that bridges the dimer interface. Mutation of either His30 or Tyr174 in Escherichia coli MnSOD reduces the superoxide dismutase activity to 30--40% of that of the wt enzyme, which is surprising, since Y174 is quite remote from the active site metal center. The 2.2 A resolution X-ray structure of H30A-MnSOD shows that removing the Tyr174-->His30 hydrogen bond from the acceptor side results in a significant displacement of the main-chain segment containing the Y174 residue, with local rearrangement of the protein. The 1.35 A resolution structure of Y174F-MnSOD shows that disruption of the same hydrogen bond from the donor side has much greater consequences, with reorientation of F174 having a domino effect on the neighboring residues, resulting in a major rearrangement of the dimer interface and flipping of the His30 ring. Spectroscopic studies on H30A, H30N, and Y174F mutants show that (like the previously characterized Y34F mutant of E. coli MnSOD) all lack the high pH transition of the wt enzyme. This observation supports assignment of the pH sensitivity of MnSOD to coordination of hydroxide ion at high pH rather than to ionization of the phenolic group of Y34. Thus, mutations near the active site, as in the Y34F mutant, as well as at remote positions, as in Y174F, similarly affect the metal reactivity and alter the effective pK(a) for hydroxide ion binding. These results imply that hydrogen bonding of the H30 imidazole N--H group plays a key role in substrate binding and catalysis.  相似文献   

13.
In order to evaluate the possible contributions of Lys-204, Tyr-224, Tyr-228, and His-307 in porcine kidney D-amino acid oxidase [EC 1.4.3.3] (DAO) to its catalytic function, we constructed four point mutant cDNAs encoding enzymes possessing Glu-204, Phe-224, Phe-228, and Leu-307 by oligonucleotide-directed in vitro mutagenesis. The four mutant cDNAs and the wild type cDNA could be expressed in vitro with similar efficiencies and about 200 ng of each enzyme protein was produced from 5 micrograms of the respective capped RNA. The electrophoretic mobilities of the in vitro synthesized mutant enzymes on SDS-polyacrylamide gel were almost identical with that of the wild type DAO, and the molecular weight was calculated to be 38,000. The Glu-204 and Phe-224 mutant DAOs showed comparable enzyme activities to that of the wild type enzyme, and were inhibited strongly by sodium benzoate, a potent competitive inhibitor of DAO. The kinetic parameters of the two mutant DAOs were also comparable to those of the wild type DAO. On the other hand, the Phe-228 and Leu-307 mutant DAOs showed no detectable activity. The results indicate that Tyr-228 and His-307 play important roles as to the constitution of the active site or participate in the reaction directly, while Lys-204 and Tyr-224 are not essential in the enzyme reaction.  相似文献   

14.
β-Galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low k cat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-β-galactosidase was inactivated in an “additive” manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-β-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent β-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

15.
R67 dihydrofolate reductase (R67 DHFR) catalyzes the transfer of a hydride ion from NADPH to dihydrofolate, generating tetrahydrofolate. The homotetrameric enzyme provides a unique environment for catalysis as both ligands bind within a single active site pore possessing 222 symmetry. Mutation of one active site residue results in concurrent mutation of three additional symmetry-related residues, causing large effects on binding of both ligands as well as catalysis. For example, mutation of symmetry-related tyrosine 69 residues to phenylalanine (Y69F), results in large increases in Km values for both ligands and a 2-fold rise in the kcat value for the reaction (Strader, M. B., Smiley, R. D., Stinnett, L. G., VerBerkmoes, N. C., and Howell, E. E. (2001) Biochemistry 40, 11344-11352). To understand the interactions between specific Tyr-69 residues and each ligand, asymmetric Y69F mutants were generated that contain one to four Y69F mutations. A general trend observed from isothermal titration calorimetry and steady-state kinetic studies of these asymmetric mutants is that increasing the number of Y69F mutations results in an increase in the Kd and Km values. In addition, a comparison of steady-state kinetic values suggests that two Tyr-69 residues in one half of the active site pore are necessary for NADPH to exhibit a wild-type Km value. A tyrosine 69 to leucine mutant was also generated to approach the type(s) of interaction(s) occurring between Tyr-69 residues and the ligands. These studies suggest that the hydroxyl group of Tyr-69 is important for interactions with NADPH, whereas both the hydroxyl group and hydrophobic ring atoms of the Tyr-69 residues are necessary for proper interactions with dihydrofolate.  相似文献   

16.
Tyr-169 in trimethylamine dehydrogenase is one component of a triad also comprising residues His-172 and Asp-267. Its role in catalysis and in mediating the magnetic interaction between FMN cofactor and the 4Fe/4S center have been investigated by stopped-flow and EPR spectroscopy of a Tyr-169 to Phe (Y169F) mutant of the enzyme. Tyr-169 is shown to play an important role in catalysis (mutation to phenylalanine reduces the limiting rate constant for bleaching of the active site flavin by about 100-fold) but does not serve as a general base in the course of catalysis. In addition, we are able to resolve two kinetically influential ionizations involved in both the reaction of free enzyme with free substrate (as reflected in klim/Kd), and in the breakdown of the Eox.S complex (as reflected in klim). In EPR studies of the Y169F mutant, it is found that the ability of the Y169F enzyme to form the spin-interacting state between flavin semiquinone and reduced 4Fe/4S center characteristic of wild-type enzyme is significantly compromised. The present results are consistent with Tyr-169 representing the ionizable group of pKa approximately 9.5, previously identified in pH-jump studies of electron transfer, whose deprotonation must occur for the spin-interacting state to be established.  相似文献   

17.
M Kubo  Y Mitsuda  M Takagi    T Imanaka 《Applied microbiology》1992,58(11):3779-3783
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

18.
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

19.
The Mg2+ concentrations required for half maximal activity, the dissociation constants, and the free energies of binding for Mg2+ bound to wild type beta-galactosidase and several site specific mutants are reported. The mutants have one of the following substitutions: Glu-461 substituted with Asp, Gln, Gly, His, or Lys; or Tyr-503 substituted with Phe, His or Cys. Substitutions for Tyr-503 had little effect on the affinity of the enzyme for Mg2+, implying that Tyr-503 is not involved in Mg2+ binding. Neutrally charged amino acids substituted for the negatively charged Glu-461 significantly decreased the affinity of the enzyme for Mg2+ and substitution of positively charged amino acids at this position further decreased the affinity. On the other hand, substitution by Asp (negative charge) at position 461 had no effect on the binding. Thus, the negatively charged side chain of Glu-461 is important for divalent cation binding to beta-galactosidase.  相似文献   

20.
Gopalan KV  Srivastava DK 《Biochemistry》2002,41(14):4638-4648
The active site residue, Glu-376, of medium-chain acyl-CoA dehydrogenase (MCAD) has been known to abstract the alpha-proton from acyl-CoA substrates during the course of the reductive half-reaction. The site-specific mutation of Glu-376-->Gln(E376Q) slows down the octanoyl-CoA-dependent reductive half-reaction of the enzyme by about 5 orders of magnitude due to impairment in the proton-transfer step. To test whether the carboxyl group of Glu-376 exclusively serves as the active site base (for abstracting the alpha-proton) during the enzyme catalysis, we undertook a detailed kinetic investigation of the enzyme-ligand interaction and enzyme catalysis, utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair and the wild-type and E376Q mutant enzymes as the catalysts. The transient kinetic data revealed that the E376Q mutation not only impaired the rate of octanoyl-CoA-dependent reduction of the enzyme-bound FAD, but also impaired the association and dissociation rates for the binding of the reaction product, octenoyl-CoA. Besides, the E376Q mutation correspondingly impaired the kinetic profiles for the quenching of the intrinsic protein fluorescence during the course of the above diverse (i.e., "chemistry" versus "physical interaction") processes. A cumulative account of the experimental data led to the suggestion that the carboxyl group of Glu-376 of MCAD is intimately involved in modulating the microscopic environment (protein conformation) of the enzyme's active site during the course of ligand binding and catalysis. Arguments are presented that the electrostatic interactions among Glu-376, FAD, and CoA-ligands are responsible for structuring the enzyme's active site cavity in the ground and transition states of the enzyme during the above physicochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号