首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal plasma flow (RPF) and glomerular filtration rate (GFR) are markedly increased during pregnancy. We recently reported that the renal hemodynamic changes observed during pregnancy in rats are associated with enhanced renal protein expression of neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine the role of nNOS in mediating renal hemodynamic changes observed during pregnancy. To achieve this goal, we examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) on kidney function in normal conscious, chronically instrumented virgin (n = 6) and pregnant rats (n = 9) at day 16 of gestation. Infusion of 7-NI had no effect on RPF (4.7 +/- 0.7 vs. 4.8 +/- 0.9 ml/min), GFR (2.2 +/- 0.2 vs. 2.5 +/- 0.4 ml/min), or mean arterial pressure (MAP; 127 +/- 7 vs. 129 +/- 10 mmHg) in virgin rats. In contrast, 7-NI infused into pregnant rats decreased RPF (8.9 +/- 1.6 vs. 6.5 +/- 1.4 ml/min) and GFR (4.4 +/- 0.7 vs. 3.3 +/- 0.7 ml/min) while having no effect on MAP (123 +/- 4 vs. 123 +/- 3 mmHg). In summary, inhibition of nNOS in pregnant rats at midgestation results in significant decreases in RPF and GFR. nNOS inhibition in virgin rats had no effect on renal hemodynamics. These data suggest that nNOS may play a role in mediating the renal hemodynamic changes that occur during pregnancy.  相似文献   

2.
M J Camargo  S A Atlas  T Maack 《Life sciences》1986,38(26):2397-2404
One of the major renal hemodynamic actions of atrial natriuretic factor (ANF) is to increase glomerular filtration rate (GFR). To assess the role of this effect on ANF-induced natriuresis (UNaV), diuresis (V) and kaliuresis (UKV) we performed late clamp experiments in six rats. After control periods (C), synthetic ANF (auriculin A) was infused i.v. (2 micrograms X min-1/kg body wt) throughout the experiment (150 min). After pre-clamp periods, the perfusion pressure of the left kidney (LK) was reduced to 75-80 mmHg. The right kidney (RK) served as a time control. In LK, before the late clamp, ANF increased (p less than 0.01) GFR from 1.5 +/- 0.1 to 1.8 +/- 0.1 ml/min, V from 17 +/- 5 to 53 +/- 5 microliters/min, and UNaV from 2.1 +/- 0.6 to 10.0 +/- 0.9 microEq/min. Almost identical increases occurred in the RK. The late clamp returned all parameters in LK to C values (p greater than 0.05): GFR to 1.4 +/- 0.1 ml/min, V to 6.3 +/- 1.2 microliter/min, and UNaV to 1.0 +/- 0.3 microEq/min. The late clamp also reversed the ANF-induced increase in UKV. In the RK, GFR (1.8 +/- 0.1 ml/min), V (38 +/- 4 microliter/min) and UNaV (7.8 +/- 0.8 microEq/min) remained elevated (p less than 0.01 vs. C) to the end of the experiment. These data demonstrate that upon return of GFR to control levels, the ANF-induced diuresis, natriuresis and kaliuresis is abolished. The results support our previous view that the increase in GFR together with a decrease in inner-medullary hypertonicity account wholly or in great part for the natriuretic action of ANF.  相似文献   

3.
脑室内注射高张盐水抑制近曲小管对水和钠的重吸收   总被引:3,自引:1,他引:2  
何小瑞  张继峰 《生理学报》1989,41(5):421-427
实验在麻醉大鼠上进行。用锂清除率为指标观察脑室内注射高张盐水对近曲小管重吸收水和钠的影响。在切断单侧肾神经的动物中,脑室内注射高张盐水后的锂清除率与肾小球滤过率比值在去神经侧肾脏从0.37±0.04增加至0.51±0.05(P<0.01);神经完好侧肾脏则从0.26±0.03增加至0.31±0.04(P<0.05);双侧肾脏的肾小球滤过率、尿量、尿钠和尿钾量均增加,且去肾神经肾脏的增加幅度高于肾神经完好肾脏。在肾小管微穿刺实验中,脑室内注射高张盐水后,近曲小管末段小管液流量从24.42±1.84nl/min增加至31.86±3.09nl/min(P<0.01),小管液的渗透压无显著变化。以上实验结果表明,脑室内注射高张盐水引起的利尿、尿钠增多反应与肾小球滤过率增加和近曲小管对水、钠重吸收减少有关,体液因素在该反应中可能起主要作用。  相似文献   

4.
A model utilizing 25 degree head-down tilt (HDT) and incorporated with chronic catheterization and renal micropuncture techniques in rats was employed to study alterations in renal function induced by HDT. Renal function and extracellular volume measurements were performed after 24 h, 4 days, and 7 days of HDT in conscious rats and compared with their own control measurements and to nontilted but similarly restrained rats. After 24 h HDT, glomerular filtration rate (GFR) increased 19 +/- 8% and renal plasma flow (RPF) increased 18 +/- 8% with increases in urine flow rate, Na+, and K+ excretion in conscious rats. These increases after 24 h were associated with an increase in extracellular volume of 16 +/- 3% (P less than 0.01). In the nontilted controls, there was a decrease in extracellular volume after 24 h of suspension. After 7 days of HDT, GFR was decreased by 7 +/- 1% (P less than 0.01), but RPF and extracellular fluid volume were not different from control values. However, RPF and GFR increased in the nontilted rats after 7 days. After 7 days of HDT renal micropuncture studies demonstrated that single-nephron filtration rate was also decreased from 43 +/- 2 to 31 +/- 3 nl/min (P less than 0.05) due solely to reductions in the glomerular ultrafiltration coefficient (0.11 +/- 0.01 to 0.07 +/- 0.01 nl.s-1 X mmHg-1, P less than 0.05). There was a dissociation between GFR and water and Na+ excretion at days 4 and 7 of HDT not observed in the nontilt restraint controls.  相似文献   

5.
An isolated perfused kidney (IPK) preparation was used to study the functional consequences of antibody-initiated glomerular complement activation in an environment devoid of circulating inflammatory cells. Control IPK, with antibody bound to the glomerular basement membrane (GBM) (mean +/- SEM, 165.0 +/- 5.7 micrograms globulin/g renal cortex), were perfused with a 5% albumin solution. Control urinary protein excretion was 0.306 +/- 0.112 mg/min, renal vascular resistance (RVR) was 4.72 +/- 0.69 mgHg/ml/min, and the glomerular filtration rate (GFR) was 0.41 +/- 0.01 ml/min/g. To produce glomerular complement activation, IPK with equal quantities of bound antibody (167.0 +/- 6.1 micrograms/g) were perfused with fresh plasma. Glomerular complement activation was associated with linear deposition of C3 on the GBM, a significant increase in protein excretion (3.317 +/- 1.077 mg/min; p less than 0.001) and RVR (10.15 +/- 1.85 mmHg/ml/min; p less than 0.001), and a decline in GFR (0.38 +/- 0.01 ml/min/g; p less than 0.05). Equivalent IPK perfused with decomplemented plasma demonstrated neither glomerular complement deposition nor augmented renal injury. By using both complement repletion and depletion techniques, this study demonstrates that antibody-initiated glomerular complement activation produces direct, neutrophil-independent renal injury. Thus, activated complement components may directly contribute to antibody-induced immune renal injury, in addition to their well established role in the recruitment of circulating inflammatory cells.  相似文献   

6.
Glomerular filtration rate (GFR) in response to adenosine precursor, NAD, and glomeruli contractility in response to adenosine were evaluated in streptozotocin-induced diabetic rats with severe (blood glucose 27.8 +/- 1.2 mmol/L) and moderate hyperglycaemia (18.2 +/- 0.9 mmol/L) compared with nondiabetic (ND)-rats. In anaesthetised rats, basal GFR was greater in moderately diabetic rats compared with severely diabetic rats (p < 0.05) and ND-rats (p < 0.02). Intravenous infusion of 5 nmol x min(-1) x kg(-1) NAD reduced GFR and renal plasma flow (RPF) in diabetic rats but had no effect on these parameters in ND-rats. Moreover, NAD-induced reduction of GFR and RPF was greater in rats with severe diabetes (41% and 30%, respectively) than in with moderate diabetes (25% and 26%, respectively). Theophylline (0.2 micromol x min(-1) x kg(-1) ) abolished renal response to NAD. Isolated glomeruli contraction in response to adenosine, assessed by glomerular 3H-inulin space reduction, was lowered in moderately diabetic-group and enhanced in severely diabetic-group. compared with ND-group (p < 0.05). Adenosine A1-receptor antagonist DPCPX inhibited adenosine-induced glomeruli contraction. This differential response of diabetic renal glomeruli to adenosine suggests that impaired glomerular contractility in response to adenosine could be responsible for hyperfiltration in moderate diabets, whereas, the increased adenosine-dependent contractility of glomeruli in severe diabetes may increase the risk of acute renal failure in this condition.  相似文献   

7.
This study examines for the first time the effects of uninephrectomy (Nx) on modulation of whole kidney glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and progression of diabetic nephropathy in the db/db mouse model of type 2 diabetes mellitus. To characterize SNGFR and tubuloglomerular feedback (TGF) responses to Nx and chronic neuronal nitric oxide synthase inhibition in the db/db mouse, we studied the effects of Nx on whole kidney GFR, SNGFR, and TGF characteristics in db/db and wild-type (WT) mice after Nx or sham Nx. We also documented progression of glomerular changes over a 6-mo period. Whole kidney GFR and SNGFR were significantly higher in db/db Nx than db/db sham mice, without change in proximal tubule reabsorptive rates. The TGF responses, determined as proximal-distal SNGFR differences, were brisk: 12.1 +/- 1.0 vs. 8.4 +/- 0.6 nl/min in WT sham (P < 0.05), 15.7 +/- 1.0 vs. 12.0 +/- 1.0 nl/min in WT Nx (P < 0.05), and 17.8 +/- 1.3 vs. 14.3 +/- 1.0 nl/min in db/db Nx (P < 0.05) mice. Chronic ingestion of the neuronal nitric oxide synthase inhibitor S-methylthiocitrulline for 2-3 wk after Nx had no effect on SNGFR or the TGF response. These studies show further elevations in whole kidney GFR and SNGFR in these hyperglycemic morbidly obese db/db mice, with an intact TGF system after Nx. In addition, in the db/db Nx mice, 4-6 mo after Nx, there was an exacerbation of the lesions of diabetic nephropathy, as quantified by a significant increase in the ratio of mesangial surface area to total glomerular surface area.  相似文献   

8.
Tubular function was measured by lithium clearance (CLi) and by its derived formulae before and after the transient increase (lasting 90 min) in glomerular filtration rate (GFR) following a meat meal (2g protein/kg body weight) in 12 normal children. Three baseline and 4 clearances after the meal were obtained, each lasting 30 min. The mean baseline CLi was 23.1 +/- 1.64 ml/min/1.73 m2. At peak GFR response (60 min from starting the meal), CLi averaged 27.6 +/- 2.4 ml/min/1.73 m2 (p less than 0.025 vs. baseline) and it was further increased (32.2 +/- 5.04 ml/min/1.73 m2, p less than 0.01 vs. baseline) 120 min after starting the meal, while GFR returned to baseline values. Fractional lithium excretion averaged 0.23 +/- 0.04 at baseline and increased continuously after the meat meal and, at completion of the study, it averaged 0.38 +/- 0.07 (p less than 0.025 vs. baseline). The distal absolute and fractional sodium reabsorption increased throughout the studies following the meal and peaked at 120 min. The functional changes were associated with a statistically significant increase in the plasma concentration of insulin, glucagon, and total amino acids after the meal. The latter at the end of the study was almost doubled (5,600 +/- 780 versus 3,200 microM at baseline, p less than 0.01). The data indicate that the tubulo glomerular feedback mechanism operates normally after a meat meal. The finding on increased distal sodium reabsorption might point to the existence of an insulin-dependent mechanism.  相似文献   

9.
Hyperthyroidism in rats is associated with increased oxidative stress. These animals also show abnormal renal hemodynamics and an attenuated pressure-diuresis-natriuresis (PDN) response. We analyzed the role of oxidative stress as a mediator of these alterations by examining acute effects of tempol, a superoxide dismutase mimetic. The effects of increasing bolus doses of tempol (25-150 micromol/kg) on mean arterial pressure (MAP), renal vascular resistance (RVR), and cortical (CBF) and medullary (MBF) blood flow were studied in control and thyroxine (T4)-treated rats. In another experiment, tempol was infused at 150 micromol.kg(-1).h(-1) to analyze its effects on the glomerular filtration rate (GFR) and on PDN response in these animals. Tempol dose dependently decreased MAP and RVR and increased CBF and MBF in control and T4-treated rats, but the T4 group showed a greater responsiveness to tempol in all of these variables. The highest dose of tempol decreased RVR by 13.5 +/- 2.1 and 5.5 +/- 1.2 mmHg.ml(-1).min(-1) in hyperthyroid (P < 0.01) and control rats, respectively. GFR was not changed by tempol in controls but was significantly increased in the hyperthyroid group. Tempol did not change the absolute or fractional PDN responses of controls but significantly improved those of hyperthyroid rats, although without attaining normal values. Tempol increased the slopes of the relationship between renal perfusion pressure and natriuresis (T4+tempol: 0.17 +/- 0.05; T4: 0.09 +/- 0.03 microeq.min(-1).g(-1).mmHg(-1); P < 0.05) and reduced 8-isoprostane excretion in hyperthyroid rats. These results show that antioxidant treatment with tempol improves renal hemodynamic variables and PDN response in hyperthyroid rats, indicating the participation of an increased oxidative stress in these mechanisms.  相似文献   

10.
The immediate (1 day, D1) and late (90 days, D90) effects of unilateral nephrectomy on contralateral renal hemodynamics, and the renal handling of electrolytes and water were investigated in the whole animal. The immediate and late ability of the remnant kidney to autoregulate perfusate flow and glomerular filtration rate (GFR) was studied in the isolated perfused kidney of the rat. In the whole animal, in D1 rats as compared to controls, GFR calculated for a single kidney increased from 0.85 +/- 0.3 to 1.1 +/- 0.2 ml/min (p less than 0.05). In D90 rats GFR increased further and was similar to prenephrectomy GFR (1.4 +/- 0.5 vs. 1.7 +/- 0.5 ml/min, p NS). Urinary prostanoid excretion in 24 h, calculated for one kidney, increased by 50-500% in D1 rats, but returned to prenephrectomy values in D90 rats. In the isolated perfused kidney, decreasing perfusion pressure (PP) from 100 to 70 mmHg did not change the renal vascular resistance (RVR) in control and D90 kidneys, but in D1 kidneys RVR decreased from 8.6 +/- 1.3 to 7 +/- 1.3 mm Hg/ml/min (p less than 0.05). In D90 kidneys RVR was significantly lower as compared to control and D1 kidneys at all perfusion pressures. Decreasing PP from 100 to 70 mm Hg resulted in a significant decrease in perfusion flow in control, D1 and D90 kidneys, while with the increase in PP from 100 to 130 mm Hg the perfusion flow increased significantly in all three kidney groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To reveal a potential modulating effect of vasoactive pharmacological agents on the prostanoid production of the venous wall, prostacyclin and thromboxane release from venous tissue slices was studied. Aortic and caval vein samples from 20 rats as well as from 21 cats were studied. Prostacyclin and thromboxane productions were determined by radioimmunoassay as 6-keto-PGF1 alpha and TxB2 released into the incubation medium. Venous tissue produced significantly less prostacyclin per unit weight than arterial tissue in rats (30.7 +/- 4.6 vs. 52.1 +/- 8.2 pg/mg/min), while in cats an opposite situation was found (16.6 +/- 3.2 vs. 7.06 +/- 1.9 pg/mg/min). Thromboxane production of venous tissue was consequently higher than corresponding values for aortic tissue (3.72 +/- 0.46 vs. 1.54 +/- 0.14 in rats and 3.4 +/- 0.6 vs. 1.33 +/- 0.19 in cats, all values in pg/mg/min). Norepinephrine and dopamine significantly increased both the prostacyclin and the thromboxane release from venous tissue, while isoproterenol had no effect. Vasopressin significantly increased thromboxane release and decreased the ratio of prostacyclin vs. thromboxane production (from 10.4 +/- 1.6 to 7.5 +/- 1.6, in acetylsalicylic acid pretreated cats). Angiotensin and thrombin had no significant effects. Bradykinin (0.5 microgram/ml) significantly augmented prostacyclin release from venous tissue (14.4 +/- 2.6 from 10.9 +/- 2.4 pg/mg/min) and decreased thromboxane release (0.65 +/- 0.18 from 1.35 +/- 0.22 pg/mg/min). Methionine-enkephalin (5 micrograms/ml) significantly reduced the thromboxane release from venous tissue slices. The presented material demonstrates that several vasoactive agents modulate the vasoactive prostanoid release of the venous wall. In some cases, the prostacyclin and the thromboxane productions are influenced separately, which in turn will have its impact on smooth muscle activity and thrombocyte aggregation.  相似文献   

12.
Previous experiments from our laboratory showed that longer-lasting reductions in renal perfusion pressure (RPP) are associated with a gradual decrease in renal blood flow (RBF) that can be abolished by clamping plasma ANG II concentration ([ANG II]). The aim of the present study was to investigate the mechanisms behind the RBF downregulation in halothane-anesthetized Sprague-Dawley rats during a 30-min reduction in RPP to 88 mmHg. During the 30 min of reduced RPP we also measured glomerular filtration rate (GFR), proximal tubular pressure (P(prox)), and proximal tubular flow rate (Q(LP)). Early distal tubular fluid conductivity was measured as an estimate of early distal [NaCl] ([NaCl](ED)), and changes in plasma renin concentration (PRC) over time were measured. During 30 min of reduced RPP, RBF decreased gradually from 6.5 +/- 0.3 to 6.0 +/- 0.3 ml/min after 5 min (NS) to 5.2 +/- 0.2 ml/min after 30 min (P < 0.05). This decrease occurred in parallel with a gradual increase in PRC from 38.2 +/- 11.0 x 10(-5) to 87.1 +/- 25.1 x 10(-5) Goldblatt units (GU)/ml after 5 min (P < 0.05) to 158.5 +/- 42.9 x 10(-5) GU/ml after 30 min (P < 0.01). GFR, P(prox), and [NaCl](ED) all decreased significantly after 5 min and remained low. Estimates of pre- and postglomerular resistances showed that the autoregulatory mechanisms initially dilated preglomerular vessels to maintain RBF and GFR. However, after 30 min of reduced RPP, both pre- and postglomerular resistance had increased. We conclude that the decrease in RBF over time is caused by increases in both pre- and postglomerular resistance due to rising plasma renin and ANG II concentrations.  相似文献   

13.
The action of lipoxin-A on glomerular microcirculatory dynamics in the rat   总被引:4,自引:0,他引:4  
Intrarenal administration of 750 ng/kg/min of LX-A in euvolemic rats resulted in significant increases in single nephron GFR (38.4 +/- 1.7 to 45.5 +/- 3.0 nl/min) and plasma flow rate (95 +/- 6 to 127 +/- 9 nl/min). The latter was due to a dramatic fall in afferent arteriolar resistance. Mean transcapillary hydraulic pressure difference increased from 33 +/- 1 to 43 +/- 3 mmHg (p less than 0.05) and the glomerular capillary ultrafiltration coefficient fell from 0.060 +/- 0.013 to 0.033 +/- 0.005 nl/(s X mmHg) (p less than 0.05). These responses to LXA in the renal microcirculation are in sharp contrast to those previously observed for the leukotrienes, and thus may represent the first example of counterregulatory (constrictor/dilator) vascular interactions within the lipoxygenase pathways.  相似文献   

14.
This study evaluated the efficacy of a prostacyclin analog, iloprost, and a thromboxane A2 receptor antagonist, daltroban, as inhibitors of experimental intimal hyperplasia. The vascular injury model used is based on an endothelial injury induced by a brief infusion of air into an isolated segment of the common carotid artery in the rat. Iloprost and daltroban were administered by continuous IV infusion for two weeks. The infusion rates were 0.1 micrograms/kg/min for iloprost and 0.1 mg/kg/hr for daltroban; these dosing rates are associated with significant alterations in eicosanoid-related pharmacologic effects. The animals were sacrificed at two weeks and the carotid arteries fixed in situ for light microscopy. The myointimal thickening was measured as the intima to media area (I/M) ratio. The control animals developed marked intimal thickening, with an I/M ratio of 0.76 +/- 0.12 (mean +/- SEM; N = 7). There was no inhibition of intimal hyperplasia (P greater than 0.05) after either iloprost (I/M ratio: 1.04 +/- 0.13; N = 8) or daltroban (I/M ratio: 0.70 +/- 0.04; N = 6). It is concluded that neither of these two modulators of eicosanoid activity, iloprost and daltroban, inhibit intimal hyperplasia following experimental endothelial injury.  相似文献   

15.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or a high-salt (HS) diet (4% NaCl) for 3 days or 4 wk. PO(2) reduction to 40-45 mmHg, the stable prostacyclin analog iloprost (10 pg/ml), and stimulatory G protein activation with cholera toxin (1 ng/ml) caused vascular smooth muscle (VSM) hyperpolarization, increased cAMP production, and dilation in cerebral arteries from rats on a LS diet. Arteries from rats on a HS diet exhibited VSM depolarization and constriction in response to hypoxia and iloprost, failed to dilate or hyperpolarize in response to cholera toxin, and cAMP production did not increase in response to hypoxia, iloprost, or cholera toxin. Low-dose angiotensin II infusion (5 ng x kg(-1) x min(-1) i.v.) restored normal responses to reduced PO(2) and iloprost in arteries from animals on a HS diet. These observations suggest that angiotensin II suppression with a HS diet leads to impaired relaxation of cerebral arteries in response to vasodilator stimuli acting at the cell membrane.  相似文献   

16.
Production of 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) and prostaglandin E2 (PGE2) was measured by radioimmunoassay in supernatants of isolated glomeruli from rats with streptozocin-induced diabetes and non-diabetic rats. Production of 6-oxo-PGF1 alpha by discs of aortas from these rats was measured at the same time. As shown before, aortic discs from diabetic rats produced significantly less 6-oxo-PGF1 alpha than aortic discs from non-diabetic rats (diabetic 1.99 +/- SEM 0.27 ng v non-diabetic 2.92 +/- 0.46 ng/mg net weight aorta; p less than 0.05). In contrast production of 6-oxo-PGF1 alpha by isolated glomeruli was not reduced in the diabetic rats (diabetic 77 +/- 7 pg v non-diabetic 70 +/- 8 pg/micrograms glomerular DNA). Similarly production of PGE2 was not diminished in the diabetic glomeruli (diabetic 1.20 +/- 0.15 ng v non-diabetic 0.91 +/- 0.12 ng/microgram glomerular DNA). It is concluded that regional differences in production of prostacyclin and 6-oxo-PGF1 alpha occur in experimental diabetes. Diminished prostacyclin production may contribute to the increased susceptibility of diabetic patients to atherosclerosis but is less likely to have a role in the pathogenesis of microangiopathy.  相似文献   

17.
Recent studies have demonstrated that cerebral arteries from rats fed a high-salt (HS) diet exhibit impaired vasodilation and altered electrophysiological response to reduction in PO2. The present study examined whether an increase in salt intake alters the response of vascular smooth muscle cells (VSMC) to prostacyclin, a crucial mediator of hypoxic dilation in cerebral arteries. VSMC were isolated from cerebral arteries of male Sprague-Dawley rats maintained on an HS (4% NaCl) or a low-salt diet (0.4% NaCl) for 3 days. The stable prostacyclin analog iloprost (10 ng/ml) inhibited serotonin (0.1-10 microM)-induced contractions and the increase in intracellular Ca2+ concentration ([Ca2+]i) in VSMC isolated from arteries of animals fed the low-salt diet. In contrast, iloprost had no effect on serotonin-induced contractions and increases in [Ca2+]i in VSMC isolated from arteries of rats fed the HS diet. Preventing the fall in ANG in rats fed the HS diet by infusion of a low dose of ANG II (5 ng.kg(-1).min(-1) i.v.) restored the inhibitory effect of iloprost on serotonin-induced contractions and increases in [Ca2+]i in VSMC from animals fed the HS diet. These effects were reversed by AT1 receptor blockade with losartan. These results indicate that ANG II suppression secondary to elevated dietary salt intake impairs vascular relaxation and Ca2+ regulation by prostacyclin.  相似文献   

18.
The mechanisms by which atrial natriuretic peptide (ANP) produces a diuresis and natriuresis remain unclear. It has been suggested that the major if not sole mediator of ANP's renal effects is a hemodynamically induced increase in glomerular filtration rate (GFR). Data from clearance studies in anesthetized rabbits demonstrate that ANP administration can produce a significant increase in absolute and percentage sodium excretion (42.0 +/- 5.9----64.6 +/- 10.2 mu eq/min, P less than 0.01, and 1.97 +/- 0.28----3.12 +/- 0.35%, P less than 0.001, respectively) without increasing GFR (16.8 +/- 2.1----16.1 +/- 2.5 cc/min, P greater than 0.30). The natriuresis occurred despite a fall in renal plasma flow (RPF) (56.7 +/- 7.0----44.5 +/- 9.4 cc/min, P less than 0.01), a rise in filtration fraction (0.33 +/- 0.01----0.46 +/- 0.05, P less than 0.01), and an unchanged filtered load of sodium (2.28 +/- 0.27----2.16 +/- 0.32 mu eq/min, P greater than 0.10). Isolated tubular microperfusion studies demonstrated that ANP, present as a 10(-9) M concentration in the solution bathing perfused proximal straight tubules (PST), did not affect fluid flux (Jv) (0.38 +/- 0.07----0.41 +/- 0.07 nl/mm/min, P greater than 0.30) or phosphate reabsorption (Jp) (1.50 +/- 0.5----1.38 +/- 0.36 pmole/mm/min, P greater than 0.50). When ANP was infused into rabbits prior to harvesting the PSTs for isolated tubular microperfusion and the results were compared to tubules taken from control animals, there was again no effect on Jv (0.37 +/- 0.05 vs 0.42 +/- 0.05 nl/mm/min, P greater than 0.50) or Jp (2.41 +/- 0.27 vs 2.42 +/- 0.44 pmole/mm/min, P greater than 0.90). These findings suggest that ANP can inhibit sodium transport without increasing whole-kidney GFR or RPF, but does not directly inhibit transport in the proximal straight tubule.  相似文献   

19.
Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors attenuate endothelin-1 (ET-1)-induced hypertension, but the mechanisms for this effect have not been clarified. Initial experiments were conducted to contrast the effect of the ACE inhibitor enalapril, the combined ACE-neutral endopeptidase inhibitor omapatrilat, and the angiotensin II receptor antagonist candesartan on the hypertensive and renal response to ET-1 in anesthetized Sprague-Dawley rats. Acute intravenous infusion of ET-1 (10 pmol x kg(-1) x min(-1)) for 60 min significantly increased mean arterial pressure (MAP) from 125 +/- 8 to 145 +/- 8 mmHg (P < 0.05) and significantly decreased glomerular filtration rate (GFR) from 0.31 +/- 0.09 to 0.13 +/- 0.05 ml x min(-1) x 100 g kidney wt(-1). Pretreatment with enalapril (10 mg/kg iv) before ET-1 infusion inhibited the increase in MAP (121 +/- 4 vs. 126 +/- 4 mmHg) before and during ET-1 infusion, respectively (P < 0.05) without blocking the effect of ET-1 on GFR. In contrast, neither omapatrilat (30 mg/kg) nor candesartan (10 mg/kg) had any effect on ET-1-induced increases in MAP or decreases in GFR. To determine whether the effect of enalapril was due to the decrease in angiotensin II or increase in kinin formation, rats were given REF-000359 (1 mg/kg iv), a selective B(2) receptor antagonist, with or without enalapril before ET-1 infusion. REF-000359 completely blocked the effect of enalapril on ET-1 infusion (MAP was 117 +/- 5 vs. 135 +/- 5 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 alone had no effect on the response to ET-1 infusion (MAP was 117 +/- 4 vs. 144 +/- 4 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 with or without enalapril had no significant effect on the ability of ET-1 infusion to decrease GFR. These findings support the hypothesis that decreased catabolism of bradykinin and its subsequent vasodilator activity oppose the actions of ET-1 to increase MAP.  相似文献   

20.
Renal blood flow decreases with the progression of chronic glomerulonephritis (CGN). This disease induces medullary ischemia and further renal dysfunction in patients with chronic renal insufficiency (CRI). Prostacyclin (PGI2), with its vasodilative action, increases renal blood flow (RBF) without increasing glomerular filtration rate (GFR). We therefore examined the possibility that PGI2 would mitigate the progression of renal dysfunction by increasing RBF in patients with CRI. Sixteen patients with progressive renal insufficiency (serum creatinine: 2.14+/-0.89 mg/dl) due to CGN were prospectively chosen for this study. The blood pressure was already under control using calcium channel blockers before and during this study in nine hypertensive patients. In the first 6 months the patients received a low-protein (0.6 g/kg/day) and low-salt (5.0 g/day) diet. In the next 6 months they received 60 microg/day of PGI2 analogue (Beraprost sodium) orally. GFR was determined by 24-hour creatinine clearance, and effective renal plasma flow (ERPF) was determined by 99mTc-MAG3 scintigraphy. Glomerular capillary pressure, the resistance ratio of afferent and efferent arterioles (R(A)/R(E)), and the other hemodynamic parameters from Gomez's estimation equation were determined at the start of this study, just before the administration of Beraprost and at the end of the study. The levels of GFR and ERPF were 34.6+/-12.4 and 140.6+/-52.1 ml/min at the start of this study respectively, and decreased to 28.0+/- 12.0 and 115.6+/-45.3 ml/min after the first 6 months without Beraprost. The levels of GFR and ERPF stayed at 28.1+/-15.7 and 119.2+/-57.6 ml/min after the next 6 months with Beraprost in the same patients. R(A)/R(E) increased in the first 6 months from 7.9+/-3.6 to 10.8+/-8.6, but remained constant during 6 months of Beraprost administration, at 10.5+/-8.0. These data indicate that PGI2 analogue diminishes the vascular resistance of glomerular afferent and efferent arterioles regulating the decrease of renal blood flow without glomerular hyperfiltration, thus mitigating the progression rate of renal dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号