首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous scaffolds of alginate/galactosylated chitosan (ALG/GC) sponges were prepared by lyophilization for liver-tissue engineering. Primary hepatocytes in ALG/GC sponges showed higher cell attachment and viability than in alginate alone owing to the specific interaction of the asialoglycoprotein receptors on hepatocyte with the galactose residues on ALG/GC sponges. Improvements in spheroid formation and long-term liver-specific functions of the immobilized hepatocyte were also observed in ALG/GC sponge.  相似文献   

2.
The kinetics and mechanisms of depolymerization of aqueous chitosan and alginate solutions at elevated temperatures have been investigated. Chitosan salts of different degree of acetylation (FA), type of counterions (-glutamate, -chloride) and degree of purity were studied. One commercially available highly purified sodium alginate sample with high content of guluronic acid (G) was also studied. Furthermore, the influence of oxygen, H+ and OH ions on the initial depolymerization rates was investigated. Depolymerization kinetics was followed by measuring the time courses of the apparent viscosity and the intrinsic viscosity. The initial rate constants for depolymerization were determined from the intrinsic viscosity data converted to a quantity proportional to the fraction of bonds broken. The activation energies of the chitosan chloride and chitosan glutamate solutions with pH close to 5 and the same degree of acetylation, FA = 0.14, were determined from the initial rate constants to be 76 ± 13 kJ/mol and 80 ± 11 kJ/mol, respectively.The results reported herein suggest that the stability of aqueous chitosan and alginate solutions at pH values 5–8 will be influenced by oxidative–reductive depolymerization (ORD) as the primary mechanism as long as transition metal ions are presented in the samples. Acid – and alkaline depolymerization will be the primary mechanisms for highly purified samples.  相似文献   

3.
Wang C  Ye S  Dai L  Liu X  Tong Z 《Biomacromolecules》2007,8(5):1739-1744
Polyelectrolyte multilayer films were prepared through layer-by-layer (LbL) self-assembly using polysaccharide sodium alginate (ALG) and chitosan (CHI). After incubation in an enzyme pepsin solution, the multilayer film was partially destroyed as detected by the decrease in fluorescent intensity because of the enzymatic degradation of CHI. The enzymatic desorption was also observed from the microcapsule wall made of the ALG/CHI multilayer film directly deposited on indomethacin (IDM) microcrystals through LbL self-assembly. After pepsin erosion, the IDM release from the microcapsules monitored by UV absorbance was obviously accelerated because of desorption. To enhance the stability of the ALG/CHI multilayer film to the enzymatic erosion, some physical and chemical methods were established to increase film thickness or to cross-link the polysaccharides within the film. Increasing the layer number and raising the deposition temperature effectively slowed down the enzymatic desorption and release rate. Especially, increasing deposition temperature was more effective because of producing a more perfect structure in the ALG/CHI multilayer film. Cross-linking the neighboring layers of ALG and CHI with 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide in the ALG/CHI multilayer film significantly reduced the enzymatic desorption and release rate. Therefore, increasing deposition temperature and cross-linking neighboring layers are effective methods to protect the multilayer film fabricated using LbL assembly from the enzymatic erosion and to prolong the release of the encapsulated drug.  相似文献   

4.
Polyelectrolyte complexes (PECs) of alginate and chitosan were formed by addition of 0.1% alginate solution (pH 6.5) to 0.1% chitosan solution (pH 4.0), and by adding the chitosan solution to the alginate solution under high shearing conditions. Variations in the properties of the polymers and the preparation procedure were studied, and the resultant PEC size, zeta potential (Zp), and pH were determined using dynamic light scattering (DLS), electrophoresis and by measuring turbidity and pH. Tapping mode atomic force microscopy (AFM) was used to examine some of the complexes. The particle size was decreased as the speed and diameter of the dispersing element of the homogenizer was increased. The net charge ratio between chitosan and alginate, and the molecular weights (MW) of both the alginate and chitosan samples were the most significant parameters that influenced the particle size, Zp, and pH. The mixing order also influenced the size of the PECs, however, the Zp and pH were not affected by the mixing order. The stability of the complexes was investigated by incubation at an elevated temperature (37 °C), storage for one month at 4 °C, alteration of the pH of the PEC mixture, and addition of salt to physiological ionic strength (0.15 M NaCl). The properties of the PEC could be affected according to the molecular properties of the polyelectrolytes selected and the preparation procedures used. The resultant PEC sizes and properties of the complex were rationalised using a core-shell model for the structure of the complexes.  相似文献   

5.
In Vitro Cellular & Developmental Biology - Plant - In the present study, different elicitors, viz., polyethylene glycol (PEG), alginate (ALG), chitosan (CHI), salicylic acid (SA), and yeast...  相似文献   

6.
The aim of this work is to characterize the microstructure of chitosan and alginate edible films by microscopy techniques and texture image analysis. Edible films were obtained by solution casting and solvent evaporation. The microscopy techniques used in this work were: light, environmental scanning electron and atomic force microscopy. Textural features and fractal dimension were extracted from the images. Entropy and fractal dimension were more useful to evaluate the complexity and roughness of films. The highest values of entropy and fractal dimension corresponded to alginate/chitosan, followed of alginate and chitosan films. An entropy/fractal dimension ratio, proposed here, was useful to characterize the degree of image complexity and roughness of edible films at different magnifications. It was possible to postulate that microscopy techniques combined with texture image analysis are efficient tools to quantitatively evaluate the surface morphology of edible films made of chitosan and alginate.  相似文献   

7.
Previous research has shown that soluble protein recovery by chitosan (Chi) complexes with polyanions such as alginate (Alg) is more effective than using chitosan alone. In this study, Chi-Alg complexes were used to recover soluble proteins from surimi wash water (SWW) slightly acidified to pH 6. Six Chi samples differing in molecular weight (MW) and degree of deacetylation (DD) were used at 20, 40 and 100mg/L SWW Chi-Alg complexes prepared with a Chi:Alg mixing ratio previously optimized (MR=0.2). FTIR analysis of the solids recovered revealed the three characteristic amide bands observed in the same region for untreated SWW confirming protein adsorption by Chi-Alg. The superior effectiveness of Chi complexes was confirmed but differences among chitosan types could not be correlated to MW and DD. Experimental Chi samples with 94%, 93%, 75% and 93% DD and 22, 47, 225 and 3404 x 10(3)Da, respectively, showed 73-76% protein adsorption while a commercial chitosan sample with 84% DD and 3832 x 10(3)Da had 74-83% protein adsorption. An experimental chitosan, SY-1000 with 94% DD and 1.5 x 10(6)Da, showed the highest protein adsorption (79-86%) and turbidity reduction (85-92%) when used at 20mg/L SWW.  相似文献   

8.
Preparation and properties of alginate/carboxymethyl chitosan blend fibers   总被引:5,自引:0,他引:5  
Alginate/carboxymethyl chitosan blend fibers, prepared by spinning their mixture solution through a viscose-type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron micrography (SEM). The analyses indicated a good miscibility between alginate and carboxymethyl chitosan, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when carboxymethyl chitosan content was 30 and 10 wt%, respectively. The wet tensile strength and breaking elongation decreased with the increase of carboxymethyl chitosan content. Introduction of CM-chitosan in the blend fiber improved water-retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibres with aqueous solution of N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride and silver nitrate, respectively, exhibited good antibacterial activity to Staphylococcus aureus.  相似文献   

9.
The commercial preparation of pectinase (Pectinex Ultra SP-L) was conjugated to alginate by noncovalent interactions by employing 1% alginate during the conjugation protocol. The optimum "immobilization efficiency" was 0.76. The pH optimum and the thermal stability of the enzyme remained unchanged upon conjugation with alginate. The soluble bioconjugate showed a 3-fold increase in V(max)/K(m) as compared to the free enzyme when the smart biocatalyst was used for chitosan hydrolysis. Time course hydrolysis of chitosan thus showed higher conversion of chitosan into reducing oligosaccharides/sugars. The smart bioconjugate could be reused five times without any detectable loss of chitosanase activity.  相似文献   

10.
目的:以牛血清白蛋白(BSA)作为模型药物,制备壳聚糖/有机累托石复合物微球,建立一种安全有效的药物控释传递系统。方法:壳聚糖(CS)/有机累托石(OREC)和海藻酸钠,按照不同的混合比例交联,在Ca2+水溶液中包裹BSA而形成壳核结构的微球。采用傅立叶红外光谱(FTIR)、动态光散射(DLS)、原子力显微镜(AFM)、X-衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)观察研究微球的形态、CS和OREC的插层结构、BSA的包封率和控释效果。结果:口光学显微镜和扫描电镜观察显示,形成了壳核结构的微球。傅里叶变换光谱和X-射线能量分散显示,OREC存在于微球中。小角X-射线衍射证实,CS链成功的插入OREC插层中。BSA的包封率和控释检测结果显示,与纯的CS/ALG形成的微球相比较,CO复合物所形成的微球药物释放率明显提高。结论:OREC-HTCC纳米粒子是良好的蛋白药物载体,具有包封率高、缓释效果好等优点,为CS-OREC作为潜在的药物给药系统的进一步应用提供科学依据。  相似文献   

11.
Lactococcus lactis ssp. cremoris was entrapped within a Ca-alginate matrix, and an in situ spectrophotometric method for monitoring cell population in calcium alginate beads described. The intracapsular cell population can be estimated by measuring the optical density of beads containing cells, using cell-free beads as reference, or by measuring absorbance of a liquified bead suspension. Alginate beads, and beads coated with chitosan type I, II, and I and II mixtures, were examined for cell release. Lower viscosity chitosan (type I) coatings reduced cell release by a factor of 100 from105 cfu ml−1 to 103 cfu ml−1 after 6 h of fermentation. Reuse of chitosan I coated alginate beads also showed a reduction in cell release by a factor of 100. Cell loading and initial cell growth within the beads greatly affected cell release. Reducing the initial cell release would lower the overall levels of cell release throughout the fermentation. Compared to non-immobilized cultures, a 20–40% reduction in the lactic acid production rate was observed for alginate beads and chitosan I coated alginate beads, respectively. This reduction can be compensated for by increasing the intracapsular cell loading during immobilization, or before the onset of fermentation.  相似文献   

12.
The isolation of chitosan from a fungal source offers the potential of a product with controlled physicochemical properties not obtainable by the commercial chemical conversion of crustacean chitin. A variety of culture and processing protocols using Mucor rouxii were studied for their effects on biomass yield and chitosan molecular weight. Weight-averaged molecular weight determined by gel permeation chromotography ranged from 2.0 x 10(5) to approximately 1.4 x 10(6) daltons. The chitosan yield ranged from 5% to 10% of total biomass dry weight and from 30% to 40% of the cell wall. Of the culture parameters studied, length of incubation and medium composition effected biomass production and molecular weight. Modification of the processing protocol, including the type and strength of acid, and cell wall disruption in acid prior to refluxing were used to optimize the efficiency of chitosan extraction.The degree of deacetylation of fungal and commercial chitosans was compared using infrared spectrometry, titration, and first derivative of UV absorbance spectrometry. The chitosan obtained directly from the fungal cell wall had a higher degree of deacetylation than commercial chitosan from the chemical conversion process.  相似文献   

13.
Demineralized bone matrix (DBM) powder is widely used for bone regeneration due to its osteoinductivity and osteoconductivity. However, difficulties with handling, tendency to migrate from graft sites and lack of stability after surgery sometimes limit the clinical utility of this material. In this work, the possibility of using sodium alginate (ALG) carrier to deliver DBM powder was assessed. DBM–ALG putty with the DBM:ALG weight ratio of 5:5, 6:4, 7:3, 8:2 were prepared, respectively. The properties of the formed composite, including discrete degree, washout property, pH, equilibrium swelling as well as cytotoxicity in vivo, were adopted to ascertain the optimal ratio of DBM and ALG. The discrete diameter increased from 1.25 cm (5:5) to 2.08 cm (8:2) with the increase of DBM content. There was significant difference between the 8:2 group and the other groups in discrete diameter. The ratio of DBM had a significant effect on the swelling value. The pH of composites showed an increase trend with the DBM ratio’s increase, when the ratio reached 7:3, the pH (7.22) was approximately equal to the body fluid. The proliferation of MC3T3-E1 cells was inhibited in the 5:5, 6:4 and 7:3 groups, while a slightly increased in the 8:2 group. The DBM–ALG with the optimal ratio of 7:3 was confirmed based on the results of the above mentioned. The histocompatibility of DBM–ALG (7:3) was examined using a rat model in which the materials were implanted subcutaneously, compared with the polyethylene, ALG and DBM. The study in vivo showed DBM–ALG (7:3) had a lower inflammatory response than DBM, a higher vascularization than ALG. The osteoinduction of DBM–ALG (7:3) was evaluated by co-culturing with MC3T3-E1 in vitro, compared with the DMEM, ALG and DBM. The results indicated calcification area in the DBM–ALG group was similar to that in the DBM group, larger than ALG group and DMEM group. The DBM–ALG (7:3) putty is promising as a directly injectable graft for repair of bone defect.  相似文献   

14.
Wang C  Ye S  Dai L  Liu X  Tong Z 《Carbohydrate research》2007,342(15):2237-2243
Polyelectrolyte multilayer films were prepared through layer-by-layer (LbL) self-assembly of chitosan (CHI) and pyrene labeled poly(2-acrylamido-2-methylpropanesulfonic acid) (APy). After incubation in an enzyme pepsin solution, multilayer films were partially destroyed as detected by a decrease in fluorescence intensity due to enzymatic degradation of CHI and desorption of APy. The multilayer desorption rate was the highest at pH 4.0. Increasing temperature from 20 degrees C to 60 degrees C accelerated desorption. The enzymatic desorption was also observed from microcapsule walls made of CHI/alginate (ALG) multilayer films directly deposited on indomethacin (IDM) microcrystals by LbL self-assembly. After pepsin erosion, the IDM release from the microcapsule monitored by UV absorbance was obviously accelerated due to desorption. The influence of incubation time, pH, and temperature of the pepsin solution on the IDM release was investigated. The release rate was the fastest after incubation in the pepsin solution at pH 4.0 due to the highest activity of pepsin. Increasing incubation temperature from 20 degrees C to 60 degrees C, however, slowed down the release rate, which was considered to be due to the formation of more perfect and compact multilayer films through the chain rearrangement at higher temperatures. The CHI/ALG multilayer film was found to maintain its barrier function to the IDM diffusion even after 6-h incubation in the pepsin solution.  相似文献   

15.
《Process Biochemistry》2014,49(5):840-844
The effective system of reusing mycelial fructosyltransferase (FTase) immobilized with two polymers, chitosan and alginate were evaluated for continuous production of fructooligosaccharides (FOS). The alginate beads were successfully developed by maintaining spherical conformation of using 0.3% (w/v) sodium alginate with 0.1% (w/v) of CaCl2 solution for highest transfructosylating activity. The characteristics of free and immobilized FTase were investigated and results showed that optimum pH and temperature of FTase activity were altered by immobilized materials. A successive production of FOS by FTase entrapped alginate beads was observed at an average of 62.96% (w/w) up to 7 days without much losing its activity. The data revealed by HPLC analysis culminate 67.75% (w/w) of FOS formation by FTase entrapped alginate beads and 42.79% (w/w) by chitosan beads in 36 h of enzyme substrate reaction.  相似文献   

16.
A novel alginate–silica nanotubes (ALG–SiNTs) composite was prepared through the incorporation of silica nanotubes (SiNTs) into the alginate (ALG) gel followed by Ca2+ cross-linking for encapsulating yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) from Saccharomyces cerevisiae. Pre-adsorption of YADH onto the surface of SiNTs before encapsulating in alginate gel was adopted to circumvent the enzyme leakage. AFM and SEM characterization confirmed that YADH molecules were substantially adsorbed on the SiNTs. SEM and EDX studies showed that the SiNTs homogenously distributed in alginate matrix. The enzyme leakage from ALG–SiNTs–YADH composite was remarkably reduced about 50% compared to that of ALG–YADH composite. Meanwhile, the optimum reaction condition, catalytic activity and kinetic parameters of immobilized YADH in ALG–SiNTs composite were studied. The results showed that stronger affinity between substrates and enzyme, higher activity retention, improved storage and operational stability were achieved when YADH was immobilized in ALG–SiNTs composite instead of ALG–YADH composite.  相似文献   

17.
The soybean (Glycine max) urease was immobilized on alginate and chitosan beads and various parameters were optimized and compared. The best immobilization obtained were 77% and 54% for chitosan and alginate, respectively. A 2% chitosan solution (w/v) was used to form beads in 1N KOH. The beads were activated with 1% glutaraldehyde and 0.5 mg protein was immobilized per ml of chitosan gel for optimum results. The activation and coupling time were 6 h and 12 h, respectively. Further, alginate and soluble urease were mixed to form beads and final concentrations of alginate and protein in beads were 3.5% (w/v) and 0.5 mg/5 ml gel. From steady-state kinetics, the optimum temperature for urease was 65 °C (soluble), 75 °C (chitosan) and 80 °C (alginate). The activation energies were found to be 3.68 kcal mol−1, 5.02 kcal mol−1, 6.45 kcal mol−1 for the soluble, chitosan- and alginate-immobilized ureases, respectively. With time-dependent thermal inactivation studies, the immobilized urease showed improved stability at 75 °C and the t1/2 of decay in urease activity was 12 min, 43 min and 58 min for soluble, alginate and chitosan, respectively. The optimum pH of urease was 7, 6.2 and 7.9 for soluble, alginate and chitosan, respectively. A significant change in Km value was noticed for alginate-immobilized urease (5.88 mM), almost twice that of soluble urease (2.70 mM), while chitosan showed little change (3.92 mM). The values of Vmax for alginate-, chitosan-immobilized ureases and soluble urease were 2.82 × 102 μmol NH3 min−1 mg−1 protein, 2.65 × 102 μmol NH3 min−1 mg−1 protein and 2.85 × 102 μmol NH3 min−1 mg−1 protein, respectively. By contrast, reusability studies showed that chitosan–urease beads can be used almost 14 times with only 20% loss in original activity while alginate–urease beads lost 45% of activity after same number of uses. Immobilized urease showed improved stability when stored at 4 °C and t1/2 of urease was found to be 19 days, 80 days and 121 days, respectively for soluble, alginate and chitosan ureases. The immobilized urease was used to estimate the blood urea in clinical samples. The results obtained with the immobilized urease were quite similar to those obtained with the autoanalyzer®. The immobilization studies have a potential role in haemodialysis machines.  相似文献   

18.
In this study, alginate (AL) fibers were electrospun and coagulated with chitosan (ChS) and ethanol using a single spinneret. These fibers exhibited a core–sheath structure that was revealed using a confocal laser scanning microscope (CLSM) and fluorescence-labeled polymers. The resulting fibers were examined using a field emission scanning electron microscope (FESEM) for the fiber size and morphology. The average diameter of the fibers ranged from 600 to 900 nm depending on the electrospinning parameters. To mimic the stability of alginate fibers in physiological fluids, the release of alginate from these fibers in normal saline was also tested. The results demonstrated that the core–sheath structure of alginate fiber can greatly reduce the degradation by 40% for 3 d in physiological environment.  相似文献   

19.
Alkaline chitosan solutions   总被引:1,自引:0,他引:1  
Rigid and transparent hydrogels were obtained upon pouring chitosan salt solutions into saturated ammonium hydrogen carbonate. Incubation at 20 degrees C for 5 days yielded chitosan carbamate ammonium salt, Chit-NHCO(2)(-)NH(4)(+) a chemical species that either by hydrolysis or by thermal treatment decomposed to restore chitosan in free amine form. Chitosans of different degrees of acetylation, molecular sizes and origins (squid and crustaceans) were used as hydrochloride, acetate, glycolate, citrate and lactate salts. Their hydrogels obtained in ammonium hydrogen carbonate yielded chitosan solutions at pH values as high as 9.6, from which microspheres of regenerated chitosans were obtained upon spray-drying. These materials had a modest degree of crystallinity depending on the partial acylation that took place at the sprayer temperature (168 degrees C). Citrate could cross-link chitosan and impart insolubility to the microspheres. Chloride on the contrary permitted to prepare microspheres of chitosan in free amine form. By the NH(4)HCO(3) treatment, the cationicity of chitosan could be reversibly masked in view of mixing chitosan with alginate in equimolar ratio without coacervation. The clear and poorly viscous solutions of mixed chitosan carbamate and alginate were spray-dried at 115 degrees C to manufacture chitosan-alginate microspheres having prevailing diameter approx 2 micron.  相似文献   

20.
An encapsulation device, designed on the basis of the laminar jet break-up technique, is characterized for cell immobilization with different types of alginate. The principle of operation of the completely sterilizable encapsulator, together with techniques for the continuous production of beads from 250 microm to 1 mm in diameter, with a size distribution below 5%, at a flow rate of 1-15 mL/min, is described. A modification of the device, to incorporate an electrostatic potential between the alginate droplets and an internal electrode, results in enhanced monodispersity with no adverse effects on cell viability. The maximum cell loading capacity of the beads strongly depends on the nozzle diameter as well as the cells used. For the yeast Phaffia rhodozyma, it is possible to generate 700 microm alginate beads with an initial cell concentration of 1 x 10(8) cells/mL of alginate whereas only 1 x 10(6) cells/ml could be entrapped within 400 microm beads. The alginate beads have been characterized with respect to mechanical resistance and size distribution immediately after production and as a function of storage conditions. The beads remain stable in the presence of acetic acid, hydrochloric acid, water, basic water, and sodium ions. The latter stability applies when the ratio of sodium: calcium ions is less than 1/5. Complexing agents such as sodium citrate result in the rapid solubilization of the beads due to calcium removal. The presence of cells does not affect the mechanical resistance of the beads. Finally, the mechanical resistance of alginate beads can be doubled by treatment with 5-10 kDa chitosan, resulting in reduced leaching of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号