首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
T. R. Heslip  R. B. Hodgetts 《Genetics》1994,138(4):1127-1135
Targeted transposition is the replacement of one P element with another. We are exploiting this unique property of P elements to study the complex regulatory domain of the Dopa decarboxylase (Ddc) gene in Drosophila melanogaster. P element constructs targeted to the same site in the genome will be subjected to the same position effect. This allows the subtle effects typical of most mutations in the Ddc regulatory region to be measured in the absence of the variable influences of position effects which are associated with the current method of germline transformation. We have investigated some of the parameters affecting targeted transposition of a Ddc transposon, P[Ddc], into a P element allele at the vestigial locus. These events were detected by an increased mutant vg phenotype. The location of the donor transposon in cis or in trans to the target had little effect on the frequency of targeting. Likewise, the mobility of different donor elements, as measured by their rate of transposition to a different chromosome, varied nearly 20-fold, while the rate of targeted transposition was very similar between them. All targeted alleles were precise replacements of the target P element by P[Ddc], but in several cases the donor was inserted in the opposite orientation. The targeted alleles could be described as the result of a replicative, conversion-like event.  相似文献   

4.
5.
P. F. Lasko  M. L. Pardue 《Genetics》1988,120(2):495-502
The region of the second chromosome of Drosophila melanogaster defined by Df(2R)vgB was screened for recessive lethal and visible mutations. Fifty-eight new recessive alleles fall into 17 complementation groups. Many new vg alleles were also isolated in a screen for new vg deficiencies. The breakpoints of the new vg deficiencies were nonrandomly distributed. The distal breakpoints of twelve of 20 deficiencies overlapping Df(2R)vgB are genetically identical to that of Df(2R)vgD, coinciding with the position of a complex, pleiotropic locus, l(2)49Ea-Psc-Su(z)2.  相似文献   

6.
Interactions are described between the Notch locus of Drosophila melanogaster, and two other loci, scabrous and vestigial, which respectively affect the eyes and wings. The Notch locus is responsible for mediating decisions of cell fate throughout development in many different tissues. Mutations and duplications of vestigial and scabrous alter the severity of phenotypes associated with Notch mutations and duplications in a manner that is essentially tissue- and allele-specific. These interactions indicate that the products of vestigial and scabrous act in conjunction with Notch to stimulate the differentiation of specific cell types.  相似文献   

7.
8.
9.
Bubliy OA  Loeschcke V 《Genetica》2000,110(1):79-85
Variation of five quantitative traits (thorax length, wing length, sternopleural bristle number, developmental time and larva-to-adult viability) was studied in Drosophila melanogaster reared at standard (25°C) and high stressful (32°C) temperatures using half-sib analysis. In all traits, both phenotypic and environmental variances increased at 32°C. For genetic variances, only two statistically significant differences between temperature treatments were found: the among-sire variance of viability and the among-dam variance of developmental time were higher under stress. Among-sire genetic variances and evolvabilities were generally higher at 32°C but narrow sense heritabilities were not. The results of the present work considered in the context of other studies in D. melanogaster indicate different patterns of genetic variation between stressful and nonstressful environments for the traits examined. Data on thorax length and viability agree with the hypothesis that genetic variance can be increased under extreme environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Y. Hiraizumi 《Genetics》1993,135(3):831-841
Previous work has shown that the direction of segregation distortion in the SD (Segregation Distorter) system in Drosophila melanogaster can sometimes be reversed, but this was found only with rather weak distorters and the effect was not large. The present study reports large negative segregation distortion in a strong distorter, SD-72 chromosome. In the presence of a specific X chromosome, supp-X(SD), the proportion, k, of SD-72 chromosomes recovered from the SD-72/cn bw males ranges from 0.99 at 20° to 0.11 at 28.5°, whereas with a standard-X chromosome, k ranges from 0.99 to 0.95 for the same temperature range. The temperature-sensitive period is during spermiogenesis. Using a mating system in which the sperm supply is nearly exhausted, it was shown that the negative distortion at high temperatures is due to an absolute reduction in the number of SD-72 chromosomes and an absolute increase in the number of cn bw chromosomes recovered. After adjusting for non-SD-related temperature effects, the amount of decrease in the number of SD-72 progeny is nearly the same as the amount of increase in the number of cn bw progeny, suggesting that the dysfunction switches from a spermatid carrying one homolog to one carrying the other. Negative distortion requires a radical revision of current hypotheses for the mechanism of segregation distortion and a possible modification of the current model is suggested, based on differential recovery of dysfunction in the two homologs during spermiogenesis.  相似文献   

11.
12.
13.
14.
15.
16.
Analysis of the development of Delta (Dl) temperature-sensitive mutants pulsed at restrictive temperature during larval and pupal stages reveals multiple phenocritical periods during which reduction of Dl function affects viability and development of adult structures. Dl function is required during the third larval instar for post-pupal viability and during the first day of pupal development for viability through eclosion. Dl function is required biphasically for the development of sensory bristles. Earlier pulses lead to bristle multiplication and later pulses lead to bristle loss. The exact intervals during which multiplication and loss are induced vary for different bristles. Dl function is also required for development of most, if not all, cell types in the retina. Different pulses result in reduction in eye size, scarring, and glossiness, as well as multiplication and loss of interommatidial bristles. We also define intervals during which Dl function is required for aspects of leg and wing development. Phenocritical periods for Dl function are temporally coincident with those previously reported for Notch (N), consistent with the hypothesis that the proteins encoded by Dl and N interact throughout development to assure correct specification of cell fates in a variety of imaginal tissues.  相似文献   

17.
The Genetics of an Esterase in Drosophila Melanogaster   总被引:4,自引:0,他引:4       下载免费PDF全文
Wright TR 《Genetics》1963,48(6):787-801
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号