首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mounting evidence supports the notion that Myf-5 and MyoD play unique roles in the development of epaxial (originating in the dorso-medial half of the somite, e.g. back muscles) and hypaxial (originating in the ventro-lateral half of the somite, e.g. limb and body wall muscles) musculature. To further understand how Myf-5 and MyoD genes cooperate during skeletal muscle specification, we examined and compared the expression pattern of MyoD-lacZ (258/2.5lacZ and MD6.0-lacZ) transgenes in wild-type, Myf-5, and MyoD mutant embryos. We found that the delayed onset of muscle differentiation in the branchial arches, tongue, limbs, and diaphragm of MyoD-/- embryos was a consequence of a reduced ability of myogenic precursor cells to progress through their normal developmental program and not because of a defect in migration of muscle progenitor cells into these regions. We also found that myogenic precursor cells for back, intercostal, and abdominal wall musculature in Myf-54-/- embryos failed to undergo normal translocation or differentiation. By contrast, the myogenic precursors of intercostal and abdominal wall musculature in MyoD-/- embryos underwent normal translocation but failed to undergo timely differentiation. In conclusion, these observations strongly support the hypothesis that Myf-5 plays a unique role in the development of muscles arising after translocation of epithelial dermamyotome cells along the medial edge of the somite to the subjacent myotome (e.g., back or epaxial muscle) and that MyoD plays a unique role in the development of muscles arising from migratory precursor cells (e.g., limb and branchial arch muscles, tongue, and diaphragm). In addition, the expression pattern of MyoD-lacZ transgenes in the intercostal and abdominal wall muscles of Myf-5-/- and MyoD-/- embryos suggests that appropriate development of these muscles is dependent on both genes and, therefore, these muscles have a dual embryonic origin (epaxial and hypaxial).  相似文献   

2.
The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.  相似文献   

3.
The cranial neural crest has been shown to give rise to a diversity of cells and tissues, including cartilage, bone and connective tissue, in a variety of tetrapods and in the zebrafish. It has been claimed, however, that in the Australian lungfish these tissues are not derived from the cranial neural crest, and even that no migrating cranial neural crest cells exist in this species. We have earlier documented that cranial neural crest cells do migrate, although they emerge late, in the Australian lungfish. Here, we have used the lipophilic fluorescent dye, DiI, to label premigratory cranial neural crest cells and follow their fate until stage 43, when several cranial skeletal elements have started to differentiate. The timing and extent of their migration was investigated, and formation of mandibular, hyoid and branchial streams documented. Cranial neural crest was shown to contribute cells to several parts of the head skeleton, including the trabecula cranii and derivatives of the mandibular arch (e.g., Meckel's cartilage, quadrate), the hyoid arch (e.g., the ceratohyal) and the branchial arches (ceratobranchials I-IV), as well as to the connective tissue surrounding the myofibers in cranial muscles. We conclude that cranial neural crest migration and fate in the Australian lungfish follow the stereotyped pattern documented in other vertebrates.  相似文献   

4.
Vertebrate head development is a classical topic that has received renewed attention during the last decade. Most reports use one of a few model organisms (chicken, mouse, zebrafish) and have focused on molecular mechanisms and the role of the neural crest, while cranial muscle development has received less attention. Here we describe cranial muscle differentiation and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. To determine the onset of differentiation we use antibodies against desmin and optical sectioning using confocal laser scanning microscopy on whole-mount immunostained embryos. This technique makes it possible to document the cranial muscle in three dimensions while keeping the specimens intact. Desmin expression starts almost simultaneously in the first, second, and third visceral arch muscles (as in other amphibians studied). Muscle anlagen divide up early into the different elements which constitute the larval cranial musculature. We extend and refine earlier findings, e.g., by documenting a clear division between interhyoideus and interhyoideus posterior. The timing of cranial muscle differentiation differs among vertebrate groups, but seems to be constant within each group. This study provides a morphological foundation for further studies of muscle cell fate and early differentiation.  相似文献   

5.
6.
7.
The morphology of skeletal tissues formed in each of the branchial arches of higher vertebrates is unique. In addition to these structures, which are derived from the neural crest, the crest-derived connective tissues and mesodermal muscles also form different patterns in each of the branchial arches. The objective of this study was to examine how these patterns arise during avian embryonic development. Presumptive second or third arch neural crest cells were excised from chick hosts and replaced with presumptive first arch crest cells. Both quail and chick embryos were used as donors; orthotopic crest grafts were performed as controls. Following heterotopic transplantation, the hosts developed several unexpected anomalies. Externally they were characterized by the appearance of ectopic, beak-like projections from the ventrolateral surface of the neck and also by the formation of supernumerary external auditory depressions located immediately caudal to the normal external ear. Internally, the grafted cells migrated in accordance with normal, second arch pathways but then formed a complete, duplicate first arch skeletal system in their new location. Squamosal, quadrate, pterygoid, Meckel's, and angular elements were present in most cases. In addition, anomalous first arch-type muscles were found associated with the ectopic skeletal tissues in the second arch. These results indicate that the basis for patterning of branchial arch skeletal and connective tissues resides within the neural crest population prior to its emigration from the neural epithelium, and not within the pharynx or pharyngeal pouches as had previously been suggested. Furthermore, the patterns of myogenesis by mesenchymal populations derived from paraxial mesoderm is dependent upon properties inherent to the neural crest.  相似文献   

8.
During embryogenesis, paraxial mesoderm cells contribute skeletal muscle progenitors, whereas cardiac progenitors originate in the lateral splanchnic mesoderm (SpM). Here we focus on a subset of the SpM that contributes to the anterior or secondary heart field (AHF/SHF), and lies adjacent to the cranial paraxial mesoderm (CPM), the precursors for the head musculature. Molecular analyses in chick embryos delineated the boundaries between the CPM, undifferentiated SpM progenitors of the AHF/SHF, and differentiating cardiac cells. We then revealed the regionalization of branchial arch mesoderm: CPM cells contribute to the proximal region of the myogenic core, which gives rise to the mandibular adductor muscle. SpM cells contribute to the myogenic cells in the distal region of the branchial arch that later form the intermandibular muscle. Gene expression analyses of these branchiomeric muscles in chick uncovered a distinct molecular signature for both CPM- and SpM-derived muscles. Islet1 (Isl1) is expressed in the SpM/AHF and branchial arch in both chick and mouse embryos. Lineage studies using Isl1-Cre mice revealed the significant contribution of Isl1(+) cells to ventral/distal branchiomeric (stylohyoid, mylohyoid and digastric) and laryngeal muscles. By contrast, the Isl1 lineage contributes to mastication muscles (masseter, pterygoid and temporalis) to a lesser extent, with virtually no contribution to intrinsic and extrinsic tongue muscles or extraocular muscles. In addition, in vivo activation of the Wnt/beta-catenin pathway in chick embryos resulted in marked inhibition of Isl1, whereas inhibition of this pathway increased Isl1 expression. Our findings demonstrate, for the first time, the contribution of Isl1(+) SpM cells to a subset of branchiomeric skeletal muscles.  相似文献   

9.
Central nervous system and skeletal muscles secrete a group of polypeptide hormones called neurotrophins (NTs). More recent studies show that NTs and their receptors are also expressed in the lung, suggesting a role for NTs in lung development. To examine the role of NTs during normal and diseased lung organogenesis, we employed wild-type and amyogenic mouse embryos (designated as Myf5-/-:MyoD-/-). Amyogenic embryos completely lacked skeletal muscles and were not viable after birth due to the respiratory failure secondary to lung hypoplasia. To examine the importance of lung-secreted NTs during normal and hypoplastic lung organogenesis, immunohistochemistry was employed. Distribution of NTs and their receptors was indistinguishable between normal and hypoplastic lungs. To further examine the importance of non-lung-secreted NTs (e.g., from the skeletal muscle and CNS) in lung organogenesis, in utero injections of two NTs were performed. The exogenously introduced NTs (i.e., non-lung-secreted) did not appear to improve development of the lung in amyogenic embryos. Moreover, immunohistochemistry showed significantly reduced number of airway smooth muscle cells (ASMCs) in hypoplastic lungs of amyogenic embryos, suggesting that the number of ASMCs is primarily regulated by the fetal breathing-like movements (i.e., mechanical factors).  相似文献   

10.
Abstract: The levels and molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and pseudocholinesterase (ΦChE, EC 3.1.1.8) were examined in various skeletal muscles, cardiac muscles, and neural tissues from normal and dystrophic chickens. The relative amount of the heavy (Hc) form of AChE in mixed-fibre-type twitch muscles varies in proportion to the percentage of glycolytic fast-twitch fibres. Conversely, muscles with higher levels of oxidative fibres (i.e., slow-tonic, oxidative-glycolytic fast-twitch, or oxidative slow-twitch) have higher proportions of the light (L) form of AChE. The effects of dystrophy on AChE and ΦChE are more severe in muscles richer in glycolytic fast-twitch fibres (e.g., pectoral or posterior latissimus dorsi, PLD); there is no alteration of AChE or ΦChE in a slow-tonic muscle. In the pectoral or PLD muscles from older dystrophic chickens, however, the AChE forms revert to a normal distribution while the ΦChE pattern remains abnormal. Muscle ΦChE is sensitive to collagenase in a similar way as is AChE, thus apparently having a similar tailed structure. Unlike skeletal muscle, cardiac muscle has very high levels of ΦChE, present mainly as the L form; AChE is present mainly as the medium (M) form, with smaller amounts of L and Hc. The latter pattern of AChE forms resembles that seen in several neural tissues examined. No alterations in AChE or ΦChE were found in cardiac or neural tissues from dystrophic chickens.  相似文献   

11.
Cartilage of the vertebrate jaw is derived from cranial neural crest cells that migrate to the first pharyngeal arch and form a dorsal "maxillary" and a ventral "mandibular" condensation. It has been assumed that the former gives rise to palatoquadrate and the latter to Meckel's (mandibular) cartilage. In anamniotes, these condensations were thought to form the framework for the bones of the adult jaw and, in amniotes, appear to prefigure the maxillary and mandibular facial prominences. Here, we directly test the contributions of these neural crest condensations in axolotl and chick embryos, as representatives of anamniote and amniote vertebrate groups, using molecular and morphological markers in combination with vital dye labeling of late-migrating cranial neural crest cells. Surprisingly, we find that both palatoquadrate and Meckel's cartilage derive solely from the ventral "mandibular" condensation. In contrast, the dorsal "maxillary" condensation contributes to trabecular cartilage of the neurocranium and forms part of the frontonasal process but does not contribute to jaw joints as previously assumed. These studies reveal the morphogenetic processes by which cranial neural crest cells within the first arch build the primordia for jaw cartilages and anterior cranium.  相似文献   

12.
As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.  相似文献   

13.
14.
Secondary cartilage occurs at articulations, sutures, and muscle attachments, and facilitates proper kinetic movement of the skeleton. Secondary cartilage requires mechanical stimulation for its induction and maintenance, and accordingly, its evolutionary presence or absence reflects species-specific variation in functional anatomy. Avians illustrate this point well. In conjunction with their distinct adult mode of feeding via levered straining, duck develop a pronounced secondary cartilage at the insertion (i.e., enthesis) of the mandibular adductor muscles on the lower jaw skeleton. An equivalent cartilage is absent in quail, which peck at their food. We hypothesized that species-specific pattern and a concomitant dissimilarity in the local mechanical environment promote secondary chondrogenesis in the mandibular adductor enthesis of duck versus quail. To test our hypothesis we employed two experimental approaches. First, we transplanted neural crest mesenchyme (NCM) from quail into duck, which produced chimeric “quck” with a jaw complex resembling that of quail, including an absence of enthesis secondary cartilage. Second, we modified the mechanical environment in embryonic duck by paralyzing skeletal muscles, and by blocking the ability of NCM to support mechanotransduction through stretch-activated ion channels. Paralysis inhibited secondary cartilage, as evidenced by changes in histology and expression of genes that affect chondrogenesis, including members of the FGF and BMP pathways. Ion channel inhibition did not alter enthesis secondary cartilage but caused bone to form in place of secondary cartilage at articulations. Thus, our study reveals that enthesis secondary cartilage forms through mechanisms that are distinct from those regulating other secondary cartilage. We conclude that by directing the musculoskeletal patterning and integration of the jaw complex, NCM modulates the mechanical forces and molecular signals necessary to control secondary cartilage formation during development and evolution.  相似文献   

15.
Concentrations of K, P and Na were determined in skeletal and cardiac muscle cells of rat embryos. High K and P levels--133 and 166 mmole/kg wet weight, resp.,--were found in skeletal muscles of 13 day old embryos, the concentration of Na in these cells being 81 mmole/kg w. w. On the 18th day of development, K and P in skeletal muscle cells decreased down to 79 and 118 mmole/kg w. w., resp., while the concentration of Na increased to 165 mmole/kg w. w. In 19 day old embryos, the concentrations of K and P increased, although they did not reach the level typical of skeletal muscles of adult rats. The concentrations of K and P in cardiac muscle cells of 13 day embryos were found equal to 100 and 108 mmole/kg w. w., resp., on the 19th day of development these concentrations reached the level typical of the cardiac muscle cells of adult rats.  相似文献   

16.
In this study, we have examined the spatiotemporal distribution of the alpha 1 integrin subunit, a putative laminin and collagen receptor, in avian embryos, using immunofluorescence microscopy and immunoblotting techniques. We used an antibody raised against a gizzard 175 x 10(3) M(r) membrane protein which was described previously and which we found to be immunologically identical to the chicken alpha 1 integrin subunit. In adult avian tissues, alpha 1 integrin exhibited a very restricted pattern of expression; it was detected only in smooth muscle and in capillary endothelial cells. In the developing embryo, alpha 1 integrin subunit expression was discovered in addition to smooth muscle and capillary endothelial cells, transiently, in both central and peripheral nervous systems and in striated muscles, in association with laminin and collagen IV. alpha 1 integrin was practically absent from most epithelial tissues, including the liver, pancreas and kidney tubules, and was weakly expressed by tissues that were not associated with laminin and collagen IV. In the nervous system, alpha 1 integrin subunit expression occurred predominantly at the time of early neuronal differentiation. During skeletal muscle development, alpha 1 integrin was expressed on myogenic precursors, during myoblast migration, and in differentiating myotubes. alpha 1 integrin disappeared from skeletal muscle cells as they became contractile. In visceral and vascular smooth muscles, alpha 1 integrin appeared specifically during early smooth muscle cell differentiation and, later, was permanently expressed after cell maturation. These results indicate that (i) the expression pattern of alpha 1 integrin is consistent with a function as a laminin/collagen IV receptor; (ii) during avian development, expression of the alpha 1 integrin subunit is spatially and temporally regulated; (iii) during myogenesis and neurogenesis, expression of alpha 1 integrin is transient and correlates with cell migration and differentiation.  相似文献   

17.
Muscles, bones, and tendons in the adult tetrapod limb are intimately integrated, both spatially and functionally. However, muscle and bone evolution do not always occur hand in hand. We asked, how does the loss of limb bones affect limb muscle anatomy, and do these effects vary among different lineages? To answer these questions, we compared limb muscular and skeletal anatomy among gymnophthalmid lizards, which exhibit a remarkable variation in limb morphology and different grades of digit and limb reduction. We mapped the characters onto a phylogeny of the group to assess the likelihood that they were acquired independently. Our results reveal patterns of reduction of muscle and bone elements that did not always coincide and examples of both, convergent and lineage‐specific non‐pentadactyl musculoskeletal morphologies. Among lineages in which non‐pentadactyly evolved independently, the degree of convergence seems to depend on the number of digits still present. Most tetradactyl and tridactyl limbs exhibited profound differences in pattern and degree of muscle loss/reduction, and recognizable morphological convergence occurred only in extremely reduced morphologies (e.g., spike‐like appendix). We also found examples of muscles that persisted although the bones to which they plesiomorphically attach had been lost, and examples of muscles that had been lost although their normal bony attachments persisted. Our results demonstrate that muscle anatomy in reduced limbs cannot be predicted from bone anatomy alone, meaning that filling the gap between osteological and myological data is an important step toward understanding this recurrent phenomenon in the evolution of tetrapods. J. Morphol. 276:1290–1310, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Gene targeting has indicated that Myf5 and MyoD are required for myogenic determination because skeletal myoblasts and myofibers are missing in mouse embryos lacking both Myf5 and MyoD. To investigate the fate of Myf5:MyoD-deficient myogenic precursor cells during embryogenesis, we examined the sites of epaxial, hypaxial, and cephalic myogenesis at different developmental stages. In newborn mice, excessive amounts of adipose tissue were found in the place of muscles whose progenitor cells have undergone long-range migrations as mesenchymal cells. Analysis of the expression pattern of Myogenin-lacZ transgene and muscle proteins revealed that myogenic precursor cells were not able to acquire a myogenic fate in the trunk (myotome) nor at sites of MyoD induction in the limb buds. Importantly, the Myf5-dependent precursors, as defined by Myf5(nlacZ)-expression, deficient for both Myf5 and MyoD, were observed early in development to assume nonmuscle fates (e.g., cartilage) and, later in development, to extensively proliferate without cell death. Their fate appeared to significantly differ from the fate of MyoD-dependent precursors, as defined by 258/-2.5lacZ-expression (-20 kb enhancer of MyoD), of which a significant proportion failed to proliferate and underwent apoptosis. Taken together, these data strongly suggest that Myf5 and MyoD regulatory elements respond differentially in different compartments.  相似文献   

19.
Requirement for ErbB2/ErbB signaling in developing cartilage and bone   总被引:2,自引:0,他引:2  
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.  相似文献   

20.
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior–posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the “mandibular” condensation, and that the “maxillary” condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号