首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticotropin-releasing factor (CRF) plays an essential role in coordinating the autonomic, endocrine and behavioral responses to stressors. In this study, we investigated the role of CRF within the medial prefrontal cortex (mPFC) in modulating unconditioned defensive behaviors, by examining the effects of microinfusing cortagine a selective type-1 CRF receptor (CRF1) agonist, or acidic-astressin a preferential CRF1 antagonist, into the mPFC in male CD-1 mice exposed to a live predator (rat exposure test—RET). Cortagine microinfusions significantly reduced several indices of defense, including avoidance and freezing, suggesting a specific role for CRF1 within the infralimbic and prelimbic regions of the mPFC in modulating unconditioned behavioral responsivity to a predator. In contrast, microinfusions of acidic-astressin failed to alter defensive behaviors during predator exposure in the RET. Cortagine microinfusions also reduced Fos protein production in the medial, central and basomedial, but not basolateral subnuclei of the amygdala in mice exposed to the rat predatory threat stimulus. These results suggest that CRF1 activation within the mPFC attenuates predator-induced unconditioned anxiety-like defensive behaviors, likely via inhibition of specific amygdalar nuclei. Furthermore, the present findings suggest that the mPFC represents a unique neural region whereby activation of CRF1 produces behavioral effects that contrast with those elicited following systemic administration of CRF1 agonists.  相似文献   

2.
Co-species housing of mice and rats is common practice at most breeding facilities and research laboratories, neglecting the possible effects on the animals. We investigated physiological as well as behavioral stress-reactivity in mice and rats which were either derived from a co-species or species-separated housing condition at the breeding facilities. The animals were kept under the housing condition they were used to or assigned to the opposite one. Co-species housing had a significant impact on acute stress reactivity in mice and rats but only if they were used to this housing condition throughout their lives. Moreover, the stress-effects appeared to be long lasting. Assigning animals, derived from a species-separated housing condition, to co-species housing led to chronic stress in mice and affected experimental behavior of rats.Our findings led to the conclusion that co-species housing in mice and rats should be avoided, supporting the recommendations by the U.S. National Institutes of Health (NIH) and the Dutch Ministry of Health, Welfare and Sport (VWS). In order to support the interpretation, facilitate the reproducibility and comparability and subsequently the generalizability of experimental results, breeding facilities should at least provide detailed information about their housing conditions.  相似文献   

3.
The intravenous (IV) administration of synthetic ovine corticotropin-releasing factor (CRF) (10 and 125 μg/kg) to chair restrained rhesus monkeys stimulated the pituitary-adrenal axis. At these doses, increases in plasma concentrations of adrenocorticotropic hormone (ACTH) and cortisol were associated with blood pressure decreases and behavioral effects. These data demonstrate that synthetic ovine CRF (10 and 125 μg/kg) administered IV to the rhesus monkey results in associated endocrine, physiological, and behavioral changes.  相似文献   

4.
Towards understanding the ontogeny of energy balance regulation in vertebrates we analyzed the responses of corticotropin-releasing factor (CRF) and corticosterone to food deprivation in the Western spadefoot toad (Spea hammondii) at three developmental stages: premetamorphic tadpole, prometamorphic tadpole, and juvenile. Corticosterone responses to 5 days of food deprivation varied among developmental stages. Both pre- and prometamorphic tadpoles increased whole-body corticosterone content with food deprivation, but the magnitude of the response of premetamorphic tadpoles was significantly greater. By contrast, juvenile toads decreased plasma corticosterone concentration. Similarly, brain CRF peptide content tended to increase in food-deprived tadpoles but did not change in food-deprived juveniles. Therefore, there is an ontogenetic difference in the way the hypothalamic-pituitary-interrenal (HPI) axis responds to food deprivation in amphibians. In tadpoles, the HPI axis is activated in response to fasting as is seen in birds and mammals, and may be associated with mobilization of stored fuels and increased foraging. Juvenile toads do not respond to food deprivation by activating the HPI axis, but instead pursue a strategy of energy conservation that involves a reduction in plasma corticosterone concentration.  相似文献   

5.
We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague–Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.  相似文献   

6.
1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla , breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions.
2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck Island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island.
3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.  相似文献   

7.
Testosterone influences the hypothalamic–pituitary–adrenal axis, anxiety-related behavior, and sensorimotor gating in rodents, but little is known about the role of the androgen receptor (AR) in mediating these influences. We compared levels of the stress hormone corticosterone at baseline and following exposure to a novel object in an open field in wild type (wt) male and female rats, and male rats with the testicular feminization mutation (Tfm) of the AR, which disables its function. Basal corticosterone was equivalent in all groups, but exposure to a novel object in an open field elicited a greater increase in corticosterone in Tfm males and wt females than in wt males. Tfm males also showed increased behavioral indices of anxiety compared to wt males and females in the test. Analysis of the immediate early gene c-Fos expression after exposure to a novel object revealed greater activation in Tfm males than wt males in some regions (medial preoptic area) and lesser activation in others (dentate gyrus, posterodorsal medial amygdala). No differences were found in a measure of sensorimotor gating (prepulse inhibition of the acoustic startle response), although Tfm males had an increased acoustic startle response compared to wt males and females. These findings demonstrate that ARs play a role in regulating anxiety-related behaviors, as well as corticosterone responses and neural activation following exposure to a mild stressor in rats.  相似文献   

8.
We investigated the effects of corticotropin-releasing factor (CRF) and corticosterone (CORT) on foraging and locomotion in Western spadefoot toad (Spea hammondii) tadpoles and juveniles to assess the behavioral functions of these hormones throughout development. We administered intracerebroventricular injections of ovine CRF or CRF receptor antagonist alphahelical CRF((9-41)) to tadpoles and juveniles, and observed behavior within 1.5 h after injection. In both premetamorphic (Gosner stage 33) and prometamorphic (Gosner stages 35-37) tadpoles, CRF injections increased locomotion and decreased foraging. Injections of alphahelical CRF((9-41)) reduced locomotion but did not affect foraging in premetamorphic tadpoles, but dramatically increased foraging in prometamorphic tadpoles compared to both placebo and uninjected controls. Similarly, alphahelical CRF((9-41)) injections stimulated food intake and prey-catching behavior in juveniles. These results suggest that in later-staged amphibians, endogenous CRF secretion modulates feeding by exerting a suppressive effect on appetite. By contrast to the inhibitory effect of CRF, 3-h exposure to CORT (500 nM added to the aquarium water) stimulated foraging in prometamorphic tadpoles. These tadpoles also exhibited a CORT-mediated increase in foraging 6 h after CRF injection, which was associated with elevated whole-body CORT content and blocked by glucocorticoid receptor (GR) antagonist (RU486) injections. Thus, exogenous CRF influences locomotion and foraging in both pre- and prometamorphic tadpoles, but endogenous CRF secretion in relatively unstressed animals does not affect foraging until prometamorphic stages. Furthermore, the opposing actions of CRF and CORT on foraging suggest that they are important regulators of energy balance and food intake in amphibians throughout development.  相似文献   

9.
Male wild house mice, selected for short (SAL) and long (LAL) attack latency, show distinctly different behavioral strategies in coping with environmental challenges. In this study, we tested the hypothesis that this difference in coping style is associated with a differential stress responsiveness of the hypothalamic-pituitary-adrenal (HPA) system. SAL rather than LAL mice showed a clear fluctuation in circulating corticosterone concentrations around the circadian peak with significantly higher levels in the late light phase. LAL mice showed lower basal ACTH levels and higher thymic and spleen weights compared to SAL. Under basal conditions, glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNA in the hippocampus and corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus were not different between the two lines. Forced swimming for 5 min induced high immobility behavior in LAL mice which was associated with an enhanced and prolonged corticosterone response as compared to SAL, while absolute ACTH levels did not differ. In addition, LAL mice showed an increase in hippocampal MR mRNA (but not GR) and hypothalamic CRH mRNA at 24 h after forced swimming. In conclusion, a genetic trait in coping style of wild house mice is associated with an idiosyncratic pattern of HPA activity, and greater responsiveness of physiological and molecular stress markers in LAL mice. In view of the profound differences in behavioral traits and stress system reactivity, these mouse lines genetically selected for attack latency present an interesting model for studying the mechanism underlying individual variation in susceptibility to stress-related psychopathology.  相似文献   

10.
Lactating dams and maternal virgin females are less fearful in behavioral tests compared with non-maternal animals, suggesting that maternal condition per se reduces the negative value of threatening stimuli. In addition, lactating females exhibit a diminished hypothalamic-pituitary-adrenal response to potential environmental threats. Can the maternal condition, independently of the endocrine profile of lactation, promote a reduction in the behavioral as well as in the endocrine response to an emotional stressor? To answer this question, anxiety-related and fear behaviors as well as the levels of corticosterone were evaluated in response to a bright-lit open field-loud noise model in maternal and non-maternal non-ovariectomized virgin females and lactating dams in the presence of the pups. Maternal animals, both lactating and virgin, presented an increased exploration of the bright-lit open field and a significant reduction of fear behaviors, indicated by the decreased flight and immobility responses to the subsequent activation of a loud noise, in comparison to non-maternal virgins. Interestingly, maternal virgin females, as non-maternal rats, showed high corticosterone plasma levels, in contrast to the lower endocrine response exhibited by lactating dams when confronted to this threat. Present results suggest that maternal condition allows females to take risks when caring for their young, a behavioral strategy that is independent of the reduced hypothalamic-pituitary-adrenal axis response characteristic of lactation. This evidence points towards a clear dissociation in the mechanisms regulating behavioral and endocrine responses to emotional stressors during motherhood.  相似文献   

11.
Birds respond to unpredictable events by secreting corticosterone, which induces various responses to cope with stressful situations. However, the evidence is still elusive whether altricial nestlings perceive and respond to external stressors. We investigated the development of adrenocortical stress response to handling-related stressor in nestlings of a small passerine bird, the pied flycatcher (Ficedula hypoleuca). Nestlings were held in isolation from their parents during the experiment to ensure that they indeed respond to handling, not to parental alarm calls. We found that both 9- and 13-day-old nestlings were able to elicit hormonal stress response. Although baseline as well as stress-induced corticosterone levels rose slightly with age, the magnitude of difference between the control and stress-induced levels remained similar in both age groups. However, comparison with adults showed that the stress response of nestlings prior to fledging was still incomplete and significantly lower than in adults. Overall, our results indicate that altricial nestlings do respond to acute stressors, but on the contrary to previous predictions the development of corticosterone stress response during growth period is not gradual and varies remarkably between different passerine species.  相似文献   

12.
Many species assess predation risk through chemical cues, but the tissue source, chemical nature, and mechanisms of production or action of these cues are often unknown. Amphibian tadpoles show rapid and sustained behavioral inhibition when exposed to chemical cues of predation. Here we show that an alarm pheromone is produced by ranid tadpole skin cells, is released into the medium via an active secretory process upon predator attack, and signals predator presence to conspecifics. The pheromone is composed of two components with distinct biophysical properties that must be combined to elicit the behavioral response. In addition to the behavioral response, exposure to the alarm pheromone caused rapid and strong suppression of the hypothalamo-pituitary-adrenal (HPA) axis, as evidenced by a time and dose-dependent decrease in whole body corticosterone content. Reversing the decline in endogenous corticosterone caused by exposure to the alarm pheromone through addition of corticosterone to the aquarium water (50 nM) partially blocked the anti-predator behavior, suggesting that the suppression of the HPA axis promotes the expression and maintenance of a behaviorally quiescent state. To our knowledge this is the first evidence for aquatic vertebrate prey actively secreting an alarm pheromone in response to predator attack. We also provide a neuroendocrine mechanism by which the behavioral inhibition caused by exposure to the alarm pheromone is maintained until the threat subsides.  相似文献   

13.
Phelps  Kendra L.  Kingston  Tigga 《Oecologia》2018,188(1):41-52
Oecologia - Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating...  相似文献   

14.
Six Angus steers (319 ± 8.5 kg) were assigned to one of two groups (hot or cold exposure) of three steers each, and placed into two environmental chambers initially maintained at 16.5–18.8°C air temperature (T a). Cold chamber T a was lowered to 8.4°C, while T a within the hot chamber was increased to 32.7°C over a 24-h time period. Measurements included respiration rate, and air and body (rectal and skin) temperatures. Skin temperature was measured at shoulder and rump locations, with determination of sweat rate using a calibrated moisture sensor. Rectal temperature did not change in cold or hot chambers. However, respiration rate nearly doubled in the heat (P < 0.05), increasing when T a was above 24°C. Skin temperatures at the two locations were highly correlated (P < 0.05) with each other and with T a. In contrast, sweat rate showed differences at rump and shoulder sites. Sweat rate of the rump exhibited only a small increase with T a. However, sweat rate at the shoulder increased more than four-fold with increasing T a. Increased sweat rate in this region is supported by an earlier report of a higher density of sweat glands in the shoulder compared to rump regions. Sweat rate was correlated with several thermal measurements to determine the best predictor. Fourth-order polynomial expressions of short-term rectal and skin temperature responses to hot and cold exposures produced r values of 0.60, 0.84, and 0.98, respectively. These results suggest that thermal inputs other than just rectal or skin temperature drive the sweat response in cattle.  相似文献   

15.
A possible relationship between aerobic fitness (AF), measured by maximal cycle ergometry (CE) and sympatho-adrenal response to acute, short lasting psycho-emotional stress was investigated by monitoring heart rate (f c) and excretion of catecholamines. The activation of the sympatho-adrenal system was characterised by the noradrenaline : adrenaline ratio. A group of 11 healthy men [22.8 (SD 2.52) years] lived under identical environmental conditions; their mean maximal oxygen uptake ( ) was 47.1 (SD 3.9) ml · min–1 · kg–1. After the physiological and psychological laboratory tests had been completed thef c of the subjects was monitored continuously during the guerilla slide and parachute jump by night, two emotionally stressful military tasks. Maximalf c (f c, max) attained during these events was 84.5% and 83% off c, max during CE (f c, max, CE), respectively. A significant relationship (r=–0.92,P<0.0002) betweenf c, max reached during the stressful tasks and was found only for the guerilla slide, which was preceded by physical strain, sleep deprivation and energy deficit. One subject with some prior experience in parachuting showed the lowestf c response and the lowest sympatho-adrenal activation in both events, independent of the degree of AF. In conclusion, AF was found to influence the sympatho-adrenal and fc response to acute, short-lasting emotional stress when the stressful event was aggravated by preceding physical strain, the magnitude of the stress response depending largely on individual experience and effective mechanisms for coping with specific stimuli.  相似文献   

16.
Social experiences during development can powerfully modulate later neuroendocrine and behavioral system. In the present study, male and female rat pups experienced daily bouts of social isolation for 6 h per day or control conditions during the third postnatal week. Performance on a 12-arm radial maze with 8 arms consistently baited with food reward was examined in adulthood. During the social isolation, both male and female pups exhibited a significant increase in plasma corticosterone levels. When tested on the radial arm maze as adults, the performance of female rats that had experienced social isolation during development was not affected; however, male rats in the isolation condition initially exhibited impairments in working memory but not reference memory. Despite achieving comparable asymptotic levels of performance on the maze, male rats that experienced social isolation during the third week demonstrated disruption in working memory retention when radial arm maze trials were interrupted after the fourth arm choice. Thus, while male rats that experience social isolation during the third week of life eventually perform comparably to controls on the standard radial arm maze task, their ability to retain information over a delay remains impaired. These findings highlight an important sex difference in the long-term effects of stress during this period of late preweanling development.  相似文献   

17.
The epithelial sodium channel (ENaC) is regulated by multiple extracellular stimuli, including shear stress. Previous studies suggest that the extracellular finger domains of ENaC α and γ subunits contain allosteric regulatory modules. However, the role of the finger domain in the shear stress response is unknown. We examined whether mutations of specific residues in the finger domain of the α subunit altered the response of channels to shear stress. We observed that Trp substitutions at multiple sites within the tract αLys-250-αLeu-290 altered the magnitude or kinetics of channel activation by shear stress. Consistent with these findings, deletion of two predicted peripheral β strands (αIle-251-αTyr-268) led to slower channel activation by shear stress, suggesting that these structures participate in the shear stress response. The effects of mutations on the shear stress response did not correlate with their effects on allosteric Na(+) inhibition (i.e. Na(+) self-inhibition), indicating a divergence within the finger domain regarding mechanisms by which the channel responds to these two external stimuli. This result contrasts with well correlated effects we previously observed at sites near the extracellular mouth of the pore, suggesting mechanistic convergence in proximity to the pore. Our results suggest that the finger domain has an important role in the modulation of channel activity in response to shear stress.  相似文献   

18.
The extensive papyrus (Cyperus papyrus) swamps of East and Central Africa form a habitat of great ecological importance due to their extent, the extreme and chronic hypoxia of the interior swamp, and the unique assemblages of water-breathing insects that characterize these communities, including zygopteran (damselfly) larvae. The major goal of this study was to quantify physiological and behavioral responses of gilled and gill-less damselfly larvae of a papyrus swamp specialist, Proischnura subfurcatum, to low-oxygen conditions. Gill autotomization was common in P. subfurcatum of the Rwembaita Swamp in Kibale National Park, Uganda, with one to three gills missing from 56% of the specimens surveyed. We examined behavioral (ventilation activity and vertical migration) and physiological (metabolic rate) response to hypoxia in gilled and gill-less P. subfurcatum. Behavioral response to progressive hypoxia indicated that gill-less individuals rely more on use of wing sheaths (lifting and spreading) than gilled P. subfurcatum larvae. However, both morphs migrated to the surface to gain contact with atmospheric air under extreme hypoxia. On average, the rate of oxygen consumption of gill-less individuals was 51% lower than that of gilled individuals. This observed metabolic depression in gill-less P. subfurcatum may be attributed to the loss of major respiratory appendages. However, the apparent ability of both gilled and gill-less individuals to maintain their metabolic rates to a similar critical tension suggests other mechanisms may compensate for loss of gills, though not enough to mediate metabolic depression.  相似文献   

19.
Optimal functioning of the hypothalamo–pituitary–adrenal (HPA) axis is paramount to maximizing fitness in vertebrates. Research in laboratory mammals has suggested that maternally-induced stress can cause significant variation in the responsiveness of an offspring's HPA axis involving both pre- and post-natal developmental mechanisms. However, very little is known regarding effects of maternal stress on the variability of offspring adrenocortical functioning in free-living vertebrates. Here we use an experimental approach that independently lowers the quality of both the pre- and post-natal developmental environment to examine programming and plasticity in the responsiveness of the HPA axis in fledglings of a free-living passerine, the European starling (Sturnus vulgaris). We found that mimicking a hormonal signal of poor maternal condition via an experimental pre-natal increase in yolk corticosterone decreased the subsequent responsiveness of the HPA axis in fledglings. Conversely, decreasing the quality of the post-natal developmental environment (by decreasing maternal provisioning capability via a maternal feather-clipping manipulation) increased subsequent responsiveness of the HPA axis in fledglings, apparently through direct effects on nestling body condition. The plasticity of these responses was sex-specific with smaller female offspring showing the largest increase in HPA reactivity. We suggest that pre-natal, corticosterone-induced, plasticity in the HPA axis may be a ‘predictive adaptive response’ (PAR): a form of adaptive developmental plasticity where the advantage of the induced phenotype is manifested in a future life-history stage. Further, we introduce a new term to define the condition-driven post-natal plasticity of the HPA axis to an unpredictable post-natal environment, namely a ‘reactive adaptive response’ (RAR). This study confirms that the quality of both the pre- and post-natal developmental environment can be a significant source of variation in the responsiveness of the HPA axis, and provides a frame-work for examining ecologically-relevant sources of stress-induced programming and plasticity in this endocrine system in a free-living vertebrate, respectively.  相似文献   

20.
In previous studies, we showed for the first time that prenatal stress in rats produces long-term alterations of formalin-induced pain behavior that are dependent on age and sex, and we demonstrated an important role of the serotonergic system in mechanisms of prenatal stress (Butkevich, I.P. and Vershinina, E.A., 2001; Butkevich, I.P. and Vershinina, E.A., 2003; Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A., Khozhai, L.I., Grigorev, I.P., Otellin, V.A., 2005; Butkevich, I.P., Mikhailenko, V.A., Khozhai, L.I., Otellin, V.A., 2006). In the present study, we focus on the influence of the maternal corticosterone milieu and its role in the effects of stress during pregnancy on formalin-induced pain and the corticosterone response to it in male and female offspring of different ages. For this purpose, we used adrenalectomy (AD) in female rats 3-4 weeks before mating (as distinct from AD typically performed at the beginning of pregnancy). Since AD is considered a reliable method to treat hypercortisolism, researches on the effects of long-term AD in dams on the systems responsible for adaptive behavior in offspring are important (such studies are not described in the literature). The results demonstrate that the differences in the corticosterone response to injection of formalin and saline are obvious in 90-day-old (adult) female offspring but masked in 25-day-old ones. AD promoted the corticosterone response to formalin-induced pain but not to injection of saline in prenatally non-stressed female offspring of both ages. Prenatal stress canceled the differences in corticosterone response to injection of formalin and saline in 25-day-old offspring of AD dams and in adult offspring of sham-operated (SH) dams but caused similar differences in adult offspring of AD dams. Sex differences were found in basal corticosterone levels in AD prenatally stressed rats of both age groups, with a higher level in females, and in the corticosterone response to formalin-induced pain in the adult rats of all groups investigated, with higher corticosterone levels in females. In regard to pain behavior, AD induced significant changes in flexing + shaking in prenatally non-stressed adult offspring and canceled the differences in this behavior between non-stressed and stressed 25-day-old offspring. There were sex differences in pain behavior of the adult rats: greater flexing + shaking in AD non-stressed males but in SH non-stressed females; greater licking in prenatally-stressed AD and SH females. These results indicate that the long-term influences of maternal corticosterone on formalin-induced pain and the corticosterone response to it are determined by the sex and age of the offspring and suggest that other mechanisms, including serotonergic ones revealed in our previous studies, are involved in the effects of prenatal stress on inflammatory pain behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号