首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence has indicated an association between the rewarding effects of ethanol intake and endogenous opioid activity. The present studies examine the presence of differences in opioid peptide mRNA content and mu and kappa opioid receptor densities, between ethanol naive AA and ANA rats bred selectively for their high and low alcohol consumption, respectively. In situ hybridization was used to compare the content of proopiomelanocortin, proenkephalin and prodynorphin mRNA in distinct brain regions known to be involved in the reinforcing properties of addictive drugs, between rats from each line. Results indicated that AA rats had a significantly greater content of proopiomelanocortin mRNA in the arcuate nucleus of the hypothalamus, of proenkephalin mRNA in the prefrontal cortex and of prodynorphin mRNA in the mediodorsal nucleus of the thalamus (p < or = .05). Receptor autoradiography was performed using 3H-labeled ligands specific for mu and kappa opioid receptors. AA rats were found to have a greater density of mu opioid receptors in the shell region of the nucleus accumbens and prefrontal cortex, but a lower density of kappa opioid receptors in the ventromedial hypothalamus, compared to ANA rats. The present data demonstrate the presence of inherited differences in the activity of distinct components of the endogenous opioid system in some brain regions associated with the processes of reward and reinforcement; and as such, may play a role in determining differences in ethanol drinking between AA and ANA rats.  相似文献   

2.
Genetic factors are believed to account for 30-50% of the risk for cocaine and heroin addiction. Dynorphin peptides, derived from the prodynorphin (PDYN) precursor, bind to opioid receptors, preferentially the kappa-opioid receptor, and may mediate the aversive effects of drugs of abuse. Dynorphin peptides produce place aversion in animals and produce dysphoria in humans. Cocaine and heroin have both been shown to increase expression of PDYN in brain regions relevant for drug reward and use. Polymorphisms in PDYN are therefore hypothesized to increase risk for addiction to drugs of abuse. In this study, 3 polymorphisms in PDYN (rs1022563, rs910080 and rs1997794) were genotyped in opioid-addicted [248 African Americans (AAs) and 1040 European Americans (EAs)], cocaine-addicted (1248 AAs and 336 EAs) and control individuals (674 AAs and 656 EAs). Sex-specific analyses were also performed as a previous study identified PDYN polymorphisms to be more significantly associated with female opioid addicts. We found rs1022563 to be significantly associated with opioid addiction in EAs [P = 0.03, odds ratio (OR) = 1.31; false discovery rate (FDR) corrected q-value]; however, when we performed female-specific association analyses, the OR increased from 1.31 to 1.51. Increased ORs were observed for rs910080 and rs199774 in female opioid addicts also in EAs. No statistically significant associations were observed with cocaine or opioid addiction in AAs. These data show that polymorphisms in PDYN are associated with opioid addiction in EAs and provide further evidence that these risk variants may be more relevant in females.  相似文献   

3.
4.
Cocaine (COC) is a psychostimulant with a high potential for abuse and addiction. Risk for COC use disorder is driven, in part, by genetic factors. Animal models of addiction-relevant behaviors have proven useful for studying both genetic and nongenetic contributions to drug response. In a previous study, we examined initial locomotor sensitivity to COC in genetically diverse inbred mouse strains. That work highlighted the relevance of pharmacokinetics (PK) in initial locomotor response to COC but was limited by a single dose and two sampling points. The objective of the present study was to characterize the PK and pharmacodynamics of COC and its metabolites (norcocaine and benzoylecgonine) in six inbred mouse strains (I/LnJ, C57BL/6J, FVB/NJ, BTBR T+ tf/J, LG/J and LP/J) that exhibit extreme locomotor responses to cocaine. Mice were administered COC at one of four doses and concentrations of cocaine, norcocaine and benzoylecgonine were analyzed in both plasma and brain tissue at 5 different time points. Initial locomotor sensitivity to COC was used as a pharmacodynamic endpoint. We developed an empirical population PK model that simultaneously characterizes cocaine, norcocaine and benzoylecgonine in plasma and brain tissues. We observed interstrain variability occurring in the brain compartment that may contribute to pharmacodynamic differences among select strains. Our current work paves the way for future studies to explore strain-specific pharmacokinetic differences and identify factors other than PK that are responsible for the diverse behavioral response to COC across these inbred mouse strains.  相似文献   

5.
Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant‐induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC.  相似文献   

6.
Deficit in beta-endorphin peptide and tendency to alcohol abuse   总被引:3,自引:0,他引:3  
Human and animal studies suggest that there is a correlation between endogenous opioid peptides, especially beta-endorphin, and alcohol abuse. It has been proven that the consumption of alcohol activates the endogenous opioid system. Consumption of alcohol results in an increase in beta-endorphin level in those regions of the human brain, which are associated with a reward system. However, it has also been observed that habitual alcohol consumption leads to a beta-endorphin deficiency. It is a well-documented phenomenon that people with a genetic deficit of beta-endorphin peptide are particularly susceptible to alcoholism. The plasma level of beta-endorphin in subjects genetically at high risk of excessive alcohol consumption shows lower basal activity of this peptide. Its release increases significantly after alcohol consumption. Clinical and laboratory studies confirm that certain genetically determined factors might increase the individual's vulnerability to alcohol abuse.  相似文献   

7.
Women initiate cocaine use at a younger age and have more complications (e.g., higher rates of major or minor depression) related to cocaine use than men. It has been proposed that estrogens play an important role in these sex differences. The addictive potential of psychoactive drugs can be measured in rats via a rewarding intracranial self-stimulation (ICSS) procedure. The rate-independent method of ICSS allows researchers to assess the “pure” rewarding effect of cocaine without influence of nonspecific motor reactions. The present study aimed to estimate effects of estradiol and a combination of estradiol and cocaine on ICSS in ovariectomized female rats. 17-β-estradiol (5 μg/animal/day, 2 days) produced a long-lasting gradual lowering of the thresholds for ICSS. The ability of estradiol to decrease thresholds for ICSS has never been shown previously. Combination of 17-β-estradiol and cocaine (5.0 mg/kg, 5 days) produced a greater effect on ICSS thresholds than the effect of either compound alone. No tolerance or sensitization to cocaine developed during the study. Present findings suggest estradiol increases sensitivity of the brain reward system in rats, which may have an important implication in understanding sex differences in cocaine effects.  相似文献   

8.
9.
The abuse of anabolic androgenic steroids (AASs), such as nandrolone, is not only a problem in the world of sports but is associated with the polydrug use of non-athletes. Among other adverse effects, AAS abuse has been associated with long term or even persistent psychiatric problems. We have previously found that nandrolone decanoate treatment could produce prolonged changes in rats’ brain reward circuits associated to drug dependence. The aim in this study was to evaluate whether AAS-induced neurochemical and behavioral changes are reversible.The increases in extracellular dopamine (DA) and serotonin (5-HT) concentration, as well as stereotyped behavior and locomotor activity (LMA) evoked by cocaine were attenuated by pretreatment with nandrolone. The recovery period, which was needed for the DA system to return back to the basic level, was fairly long compared to the dosing period of the steroid. In the 5-HT system, the time that system needed to return back to the basal level, was even longer than in the DA system. The attenuation was still seen though there were no detectable traces of nandrolone in the blood samples.Given that accumbal outflow of DA and 5-HT, as well as LMA and stereotyped behavior are all related to reward of stimulant drugs, this study suggests that nandrolone decanoate has significant, long-lasting but reversible effects on the rewarding properties of cocaine.  相似文献   

10.
BACKGROUND: Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. RESULTS: We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. CONCLUSIONS: We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.  相似文献   

11.
Estradiol is thought to play a critical role in the increased vulnerability to psychostimulant abuse in women. Sex differences in the ability of estradiol to influence cocaine self-administration in adult rats have been hypothesized to depend upon pubertal estradiol exposure. The current study investigated whether the presence of gonadal hormones during puberty affected cocaine self-administration behavior and its sensitivity to adult estradiol treatment in male and female Sprague–Dawley rats. Subjects were gonadectomized or SHAM-operated at postnatal day (PD) 22, and received either OIL or estradiol benzoate (EB) during the approximate time of puberty (PD27 to PD37). Adult rats were subsequently treated with either EB or OIL 30 min before cocaine self-administration (0.3 mg/kg/inf) in order to examine the effects of pubertal manipulations on the estradiol sensitivity of acquisition on a fixed ratio (FR) 1 schedule, total intake on a FR5 schedule and motivation on a progressive ratio schedule. Adult EB treatment only affected cocaine self-administration in females, which is consistent with previous research. Adult EB treatment enhanced acquisition in all females irrespective of puberty manipulations. All females, except those treated with EB during puberty, displayed increased cocaine intake following adult EB treatment. Adult EB treatment only enhanced motivation in females that were intact during puberty, whereas those treated with EB during puberty showed reduced motivation. Therefore, the sensitivities of different self-administration behaviors to adult estradiol treatment are organized independently in females, with pubertal estradiol exerting a greater influence over motivational processes, and negligible effects on learning/acquisition.  相似文献   

12.
Recent evidence suggests that the effects of the opioids on gonadotropin release may depend on the endocrine status existing in the experimental animal. In the brain, the effects of the opioids are exerted through the interaction with different classes of opioid receptors (mu, delta, kappa, etc.). Among these, the mu receptors appear to be particularly relevant to the control of gonadotropin secretion. Different groups of experiments have been performed in the rat in order to analyze whether changes of circulating levels of sex steroids may have an impact on the binding characteristics of hypothalamic mu opioid receptors, as evaluated by a receptor binding assay performed on plasma membrane preparations, using [3H]dihydromorphine as a mu ligand. In a first series of experiments, it has been observed that the ontogenesis of hypothalamic mu opioid receptors is different in male and in female rats: the concentration of mu sites, similar in animals of the two sexes at 16 days of age, increases in females, but not in males, between day 16 and day 26 of life. This sexual difference persists in 60-day old animals, when the brain is fully mature. It has also been observed that the pattern of maturation of hypothalamic mu receptors can be reversed by neonatal castration of males and by neonatal testosterone treatment of females. In a second series of experiments, it has been shown that in the hypothalamus of regularly cycling female rats the concentration of mu receptors varies during the different phases of the estrous cycle. In particular, a rather high density of mu sites during diestrus day 2 and the morning of the day of proestrus was found; this is followed by a progressive decline during the afternoon of the day of proestrus and the day of estrus, with a minimum value of the concentration of mu receptors being recorded in the first day of diestrus. These fluctuations seem to be linked to the physiological changes of serum levels of ovarian steroids: in fact, in a third series of experiments, it has been found that the positive feedback effect on LH release, exerted by the treatment of ovariectomized female rats with estrogens plus progesterone, is accompanied by a significant decrease of the concentration of hypothalamic mu opioid receptors; treatments with estrogens alone, able to induce a negative feedback effect on LH secretion, are not associated with modifications of hypothalamic mu receptors. These data seem to indicate that hypothalamic mu receptors may be involved in the positive but not in the negative feedback control of LH secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A wide body of research has indicated that perinatal exposure to stressors alters the organism, notably by programming behavioral and neuroendocrine responses and sensitivity to drugs of abuse in adulthood. Recent evidence suggests that adolescence also may represent a sensitive period of brain development, and yet there has been little research on the long-lasting effects of stressors during this period. We investigated the effects of pubertal social stress (PS; daily 1-h isolation followed by pairing with a new cage mate on postnatal days 33-48) on locomotor sensitization to injections of nicotine and corticosterone response to restraint stress when the rats were adults (approximately 3 weeks after PS). There were no differences among the groups in locomotor activity to injections of saline. However, PS females had enhanced locomotor sensitization to repeated doses of nicotine compared to control (non-stressed; NS) females, whereas PS males and NS males did not differ. PS enhanced the corticosterone response to restraint in male rats previously sensitized to nicotine and decreased the corticosterone response in nonsensitized male rats. In contrast, PS females and NS females did not differ in plasma corticosterone levels in response to restraint stress, but NS females showed enhanced corticosterone release to restraint after sensitization to nicotine. Thus, during adolescence, social stressors can have long-lasting effects, and the effects appear to differ for males and females.  相似文献   

14.
Drugs of abuse act on the brain circuits mediating motivation and reward associated with natural behaviors. There is ample evidence that drugs of abuse impact male and female sexual behavior. First, the current review discusses the effect of drugs of abuse on sexual motivation and performance in male and female humans. In particular, we discuss the effects of commonly abused drugs including psychostimulants, opiates, marijuana/THC, and alcohol. In general, drug use affects sexual motivation, arousal, and performance and is commonly associated with increased sexual risk behaviors. Second, studies on effects of systemic administration of drugs of abuse on sexual behavior in animals are reviewed. These studies analyze the effects on sexual performance and motivation but do not investigate the effects of drugs on risk-taking behavior, creating a disconnect between human and animal studies. For this reason, we discuss two studies that focus on the effects of alcohol and methamphetamine on inhibition of maladaptive sex-seeking behaviors in rodents. Third, this review discusses potential brain areas where drugs of abuse may be exerting their effect on sexual behavior with a focus on the mesolimbic system as the site of action. Finally, we discuss recent studies that have brought to light that sexual experience in turn can affect drug responsiveness, including a sensitized locomotor response to amphetamine in female and male rodents as well as enhanced drug reward in male rats.  相似文献   

15.
The misuse of anabolic androgenic steroids (AAS) seems to produce profound effects on the central nervous system, leading to aggressive behavior and increased sensitivity to other drugs of abuse. The present study addresses the effect on the enzymatic transformation, here called dynorphin converting enzyme-like activity. The formation of the mu/delta opioid peptide receptor-preferring Leu-enkephalin-Arg(6) from the kappa opioid peptide receptor-preferring dynorphin A was measured in rats treated with nandrolone decanoate. Significant variations in enzymatic transformation were observed in several brain regions. An altered receptor activation profile in these regions may be one contributory factor behind AAS-induced personality changes.  相似文献   

16.
Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug‐induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug‐induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesolimbic dopamine neurons, using in vivo microdialysis in selectively bred FAST and SLOW mouse lines, which were bred for extreme sensitivity (FAST) and insensitivity (SLOW) to the locomotor stimulant effects of ethanol. These mice also show a genetically correlated difference in stimulant response to cocaine (FAST > SLOW). Single injections of ethanol (2 g/kg) or cocaine (40 mg/kg) resulted in larger increases in dopamine within the NAcc in FAST compared with SLOW mice. There was no effect of either drug on NAcc glutamate levels. These experiments indicate that response of the mesolimbic dopamine system is genetically correlated with sensitivity to ethanol‐ and cocaine‐induced locomotion. Because increased sensitivity to the stimulating effects of ethanol appears to be associated with greater risk for alcohol abuse, genetically determined differences in the mesolimbic dopamine response to ethanol may represent a critical underlying mechanism for increased genetic risk for alcoholism.  相似文献   

17.
18.
The incentive-motivating effects of external stimuli are dependent, in part, upon the internal need state of the organism. The increased rewarding efficacy of food as a function of energy deficit, for example, has obvious adaptive value. The enhancement of food reward extends, however, to drugs of abuse and electrical brain stimulation, probably due to a shared neural substrate. Research reviewed in this paper uses lateral hypothalamic electrical stimulation to probe the sensitivity of the brain reward system and investigate mechanisms through which metabolic need, induced by chronic food restriction and streptozotocin-induced diabetes, sensitizes this system. Results indicate that sensitivity to rewarding brain stimulation varies inversely with declining body weight. The effect is not mimicked by pharmacological glucoprivation or lipoprivation in ad libitum fed animals; sensitization appears to depend on persistent metabolic need or adipose depletion. While the literature suggests elevated plasma corticosterone as a peripheral trigger of reward sensitization, sensitization was not reversed by meal-induced or pharmacological suppression of plasma corticosterone. Centrally, reward sensitization is mediated by opioid receptors, since the effect is reversed by intracerebroventricular (i.c.v.) infusion of naltrexone, TCTAP (μ antagonist) and nor-binaltorphimine (κ antagonist). The fact that these same treatments, as well as i.c.v. infusion of dynorphin A antiserum, block the feeding response to lateral hypothalamic stimulation suggests that feeding and reward sensitization are mediated by a common opioid mechanism. Using in vitro autoradiography, radioimmunoassays and a solution hybridization mRNA assay, brain regional μ and κ opioid receptor binding, levels of prodynorphin-derived peptides, and prodynorphin mRNA, respectively, were measured in food-restricted and diabetic rats. Changes that could plausibly be involved in reward sensitization are discussed, with emphasis on the increased dynorphin A1–8 and prodynorphin mRNA levels in lateral hypothalamic neurons that innervate the pontine parabrachial nucleus, where μ binding decreased and κ binding increased. Finally, the possible linkage between metabolic need and activation of a brain opioid mechanism is discussed, as is evidence supporting the relevance of these findings to drug abuse. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

19.
Stimulant abuse continues to be a growing problem among women. Over the last 10-15 years, an increasing number of studies have focused on factors that may be implicated in stimulant abuse in women as compared to men, including the role of hormonal fluctuations across the menstrual cycle. Numerous preclinical studies have documented that female rodents are more sensitive than male rodents to the behavioral effects of stimulant administration and the hormone estradiol is involved in the enhanced response to stimulants observed in females. In contrast, fewer studies have been conducted in humans and non-human primates addressing the role of sex and gonadal hormones on the effects of cocaine. This review paper presents a recent update on data collected in our Human Cocaine Challenge Laboratory and our Non-human Primate Laboratory, including analysis of cocaine pharmacokinetics, sex differences, the menstrual cycle, and the role of progesterone in modulating the response to cocaine. Our studies indicate that there is minimal evidence that the response to intranasal cocaine varies across the menstrual cycle or between men and women. In contrast, the response to smoked cocaine is greater in the follicular phase than the luteal phase and differences between men and women generally only emerge when men are compared to women in the luteal phase. In terms of potential hormonal mechanisms for these differences, the hormone progesterone attenuates the subjective response to cocaine. With respect to cocaine self-administration, there are minimal changes across the menstrual cycle in both humans and non-human primates. Thus, there is converging evidence across a range of species that the behavioral effects of cocaine (1) differ between males and females, (2) differ in relation to hormonal fluctuations, (3) can be attenuated by progesterone (at least in females), and (4) do not appear to be related to differences in cocaine pharmacokinetics.  相似文献   

20.
Mesolimbic dopaminergic neurotransmission is modulated by dynorphin peptides binding to kappa-opioid receptors. The interaction between dynorphin and dopamine systems makes the kappa-opioid receptor a potential drug discovery target for the development of therapeutic agents for schizophrenia and drug abuse. This study reports the specificity and parameters of [3H]U69593 binding in the insular cortex, a representative corticolimbic area of the human brain. The results demonstrate that the radioligand [3H]U69593 labels a single population of receptors in human insular cortex with an affinity in the low nanomolar range. The pharmacological profile for inhibition of [3H]U69593 binding was determined in this brain region using drugs known to bind to mu, kappa and delta opioid receptors. The results show that kappa-opioid selective agonists and antagonists inhibit binding of this ligand in human brain with comparable affinities and rank order as previously described for rat and guinea pig brain and the cloned kappa1-opioid receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号