首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of asialoglycoproteins to their liver cell receptor results in internalization of the ligand-receptor complex. These complexes rapidly appear in intracellular compartments termed endosomes whose acidification results in ligand-receptor dissociation. Ligand and receptor subsequently segregate: ligand is transported to lysosomes and is degraded while receptor recycles to the cell surface. The proton ionophore monensin prevents acidification of endosomes and reversibly inhibits this acid-dependent dissociation of ligand from receptor. The present study determined the effect of monensin treatment of short-term cultured rat hepatocytes on cell-surface-receptor content, determined both by their binding activity and immunologically, following continuous endocytosis of asialoorosomucoid. Inclusion of 5 microM monensin in the incubation medium reduced the number of immunologically detectable cell-surface receptors by 20% in the absence of ligand. During continuous endocytosis of asialoorosomucoid, inclusion of monensin resulted in a 30-40% reduction of cell-surface receptor detectable either by ligand binding or immunologically. These results suggest that the reduced liver-cell-surface content of receptor in monensin is due to intracellular trapping of ligand-receptor complexes. The reduction of surface receptor during monensin incubation in the absence of ligand suggests that "constitutive recycling" of plasma membrane components also requires intracellular acidification.  相似文献   

2.
Histologic and electron microscopic examination of liver tissue from glucocorticoid-treated dogs (GT dogs) showed a markedly abnormal hepatocellular morphology which consisted of severe hepatocellular swelling, vacuolation, and peripheral displacement of subcellular organelles. The abnormal cell morphology was typical of that seen in clinical cases of canine Cushing's Syndrome. The hepatocyte isolation procedure used here works equally well for the preparation of viable hepatocytes from both normal and GT dogs even though GT dogs displayed a pronounced hepatopathy. Cell yields (10(9) cells from a 30-cm3 section of liver) are similar to those reported for rat hepatocytes using whole liver in situ perfusion and cell viability is routinely greater than 85%. The isolation procedure preserved the "abnormal" state or swollen morphology of the hepatocytes from GT dogs and thus can be used in pathophysiological studies of glucocorticoid-induced hepatopathy. The isolated hepatocytes were 3.2 times greater in cell volume than normal hepatocytes. We also observed over a 12.3-fold increase in alkaline phosphatase activity and the appearance in both the liver and the serum of GT dogs of the unique, corticosteroid alkaline phosphatase isozyme (CALP). In spite of the obvious abnormal liver morphology and elevated serum and liver alkaline phosphatase activities, the function of the hepatic cell surface carbohydrate binding protein, the Gal/GalNAc or asialoglycoprotein receptor, was not impaired. We found a trend of about a 1.5-fold increase in the initial rate of ligand uptake as well as 1.6-fold more receptors on GT dog hepatocytes compared to normal hepatocytes. The ligand binding affinity of these receptors, as well as the rate of ligand degradation, was identical in hepatocytes isolated from normal and diseased dogs. When intestinal alkaline phosphatase (IALP) is used as the ligand, approximately 25% was exocytosed intact following endocytosis. These results demonstrate that dogs with glucocorticoid hepatopathy possess a normally functioning Gal/GalNAc receptor. Furthermore, these data are consistent with the hypothesis that structurally related IALP and CALP isozymes may also be metabolically related through the Gal/GalNAc receptor endocytosis pathway. That is, a portion of the IALP normally endocytosed through the Gal/GalNAc receptor pathway in glucocorticoid-treated dogs may be recycled and converted (hyperglycosylated) to the abnormal serum CALP isozyme rather than being degraded.  相似文献   

3.
Binding studies with cells that had been permeabilized with saponin indicate that alveolar macrophages have an intracellular pool of mannose-specific binding sites which is about 4-fold greater than the cell surface pool. Monensin, a carboxylic ionophore which mediates proton movement across membranes, has no effect on binding of ligand to macrophages but blocks receptor-mediated uptake of 125I-labelled beta-glucuronidase. Inhibition of uptake was concentration- and time-dependent. Internalization of receptor-bound ligand, after warming to 37 degrees C, was unaffected by monensin. Moreover, internalization of ligand in the presence of monensin resulted in an intracellular accumulation of receptor-ligand complexes. The monensin effect was not dependent on the presence of ligand, since incubation of macrophages with monensin at 37 degrees C without ligand resulted in a substantial decrease in cell-surface binding activity. However, total binding activity, measured in the presence of saponin, was much less affected by monensin treatment. Removal of monensin followed by a brief incubation at pH 6.0 and 37 degrees C, restored both cell-surface binding and uptake activity. Fractionation experiments indicate that ligands enter a low-density (endosomal) fraction within the first few minutes of uptake, and within 20 min transfer to the lysosomal fraction has occurred. Monensin blocks the transfer from endosomal to lysosomal fraction. Lysosomal pH, as measured by the fluorescein-dextran method, was increased by monensin in the same concentration range that blocked ligand uptake. The results indicate that monensin blockade of receptor-mediated endocytosis of mannose-terminated ligands by macrophages is due to entrapment of receptor-ligand complexes and probably receptors in the pre-lysosomal compartment. The inhibition is linked with an increase in the pH of acid intracellular vesicles.  相似文献   

4.
Both the dendritic cell receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR bind human immunodeficiency virus and enhance infection. However, biochemical and structural comparison of these receptors now reveals that they have very different physiological functions. By screening an extensive glycan array, we demonstrated that DC-SIGN and DC-SIGNR have distinct ligand-binding properties. Our structural and mutagenesis data explain how both receptors bind high-mannose oligosaccharides on enveloped viruses and why only DC-SIGN binds blood group antigens, including those present on microorganisms. DC-SIGN mediates endocytosis, trafficking as a recycling receptor and releasing ligand at endosomal pH, whereas DC-SIGNR does not release ligand at low pH or mediate endocytosis. Thus, whereas DC-SIGN has dual ligand-binding properties and functions both in adhesion and in endocytosis of pathogens, DC-SIGNR binds a restricted set of ligands and has only the properties of an adhesion receptor.  相似文献   

5.
The carbohydrate specificity of mistletoe toxic lectin-I (ML-I) was studied by haemagglutination-inhibition assay. The results indicated that ML-I has a broad range of affinity for Gal alpha,beta linked sequences. The galabiose (E, Gal alpha 1----4Gal) sequence, a receptor of the uropathogenic E. coli ligand, was one of the best disaccharide inhibitors tested. The lectin also exhibits affinity for Lac(Gal beta 1----4Glc), T(Gal beta 1----3GalNAc), I/II(Gal beta 1----3/4GlcNAc) and B(Gal alpha 1----3Gal) sequences. Gal alpha 1----4Gal and Gal beta 1----4Glc are frequently occurring sequences of many glycosphingolipids located at the mammalian cell membranes, such as intestinal and red blood cell membranes, for ligand binding and toxin attachment. This finding provides important information concerning the possible mechanism of intoxication of cells by the mistletoe preparation.  相似文献   

6.
Limited proteolysis, gel filtration, and circular dichroism have been used to identify at least three distinct conformational states of a proteolytic fragment containing the ligand-binding domain of the chicken receptor for endocytosis of glycoproteins. Differences in the ligand-binding activity of intact receptor brought about by changing Ca2+ concentrations and pH values can be correlated with different physical states of the binding domain present under similar conditions. An active, ligand-binding state can be detected at either pH 7.8 or 5.4, but 10-fold higher concentrations of Ca2+ are required to stabilize this state at the lower pH. In all cases, the dependence on Ca2+ concentration is second-order, suggesting that two Ca2+ ions are bound to each domain. These studies demonstrate an interdependence between the effects of Ca2+ concentration and pH on both ligand-binding activity and receptor conformation, which is important to consider when describing the binding and dissociation of ligand during endocytosis.  相似文献   

7.
《The Journal of cell biology》1983,96(6):1824-1828
Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle.  相似文献   

8.
To define the specific role of the galanin receptors when mediating the effect of galanin, effective tools for distinct activation and inhibition of the different receptor subtypes are required. Several of the physiological effects modulated by galanin are implicated to be mediated via the GalR2 subtype and have been distinguished from GalR1 effects by utilizing the Gal(2–11) peptide, recognizing only GalR2 and GalR3. In this study, we have performed a mutagenesis approach on the GalR2 subtype and present, for the first time, a molecular characterization of the interactions responsible for ligand binding and receptor activation at this receptor subtype. Our results identify four residues, His252 and His253 located in transmembrane domain 6 and Phe264 and Tyr271 in the extracellular loop 3, to be of great significance. We show evidence for the N-terminal tail of GalR2 to participate in ligand binding and that selective binding of Gal(2–11) includes interaction with the Ile256 residue, located at the very top of TM 6. In conclusion, we present a mutagenesis study on GalR2 and confer interactions responsible for ligand binding and receptor activation as well as selective recognition of the Gal(2–11) peptide at this receptor subtype. The presented observations could be of major importance for the design and development of new and improved peptide and non-peptide ligands, selectively activating the GalR2 subtype.  相似文献   

9.
The mechanisms of carbachol-induced muscarinic acetylcholine receptor (mAChR) down-regulation, and recovery following carbachol withdrawal, were studied in the neuroblastoma x glioma hybrid NG108-15 cell line by specific ligand binding assays. N-[3H]Methylscopolamine ([3H]NMS) and [3H]quinuclidinyl benzilate ([3H]QNB) were used as the ligands for the cell surface and total cellular mAChRs, respectively. Exposure of cells to 1 mM carbachol for 16 h decreased the specific binding of [3H]NMS and [3H]QNB by approximately 80%. Bacitracin (1-4 mg/ml) and methylamine (1-15 mM), inhibitors of transglutaminase and of endocytosis, prevented agonist-induced loss of surface mAChRs. Pretreatment of cells with the antimicrotubular agents nocodazole (0.1-10 microM) and colchicine (1-10 microM) prevented carbachol-induced loss of [3H]QNB binding, but not that of [3H]NMS binding. These results indicate that agonist-induced mAChR down-regulation occurs by endocytosis, followed by microtubular transport of receptors to their intracellular degradation sites. When carbachol was withdrawn from the culture medium following treatment of cells for 16 h, receptors recovered and were incorporated to the surface membrane. This recovery process was antagonized by monovalent ionophores monensin (0.1 microM) and nigericin (40 nM), which interfere with Golgi complex function. Receptor recovery was also prevented by the antimicrotubular agent nocodazole. Thus, recovery of receptors appears to be mediated via Golgi complex and microtubular transport to the surface membrane.  相似文献   

10.
The thermodynamics of the binding of D-galactopyranoside (Gal), 2-acetamido-2-deoxygalactopyranoside (GalNAc), methyl-alpha-D-galactopyranoside, and methyl-beta-D-galactopyranoside to the basic agglutinin from winged bean (WBAI) in 0.02 M sodium phosphate and 0.15 M sodium chloride buffer have been investigated from 298.15 to 333.15 K by titration calorimetry and at the denaturation temperature by differential scanning calorimetry (DSC). WBAI is a dimer with two binding sites. The titration calorimetry yielded single-site binding constants ranging from 0.56 +/- 0.14 x 10(3) M-1 for Gal at 323.15 K to 7.2 +/- 0.5 x 10(3) M-1 for GalNAc at 298.15 K and binding enthalpies ranging from -28.0 +/- 2.0 kJ mol-1 for GalNAc at 298.15 K to -14.3 +/- 0.1 kJ mol-1 for methyl-beta-D-galactopyranoside at 322.65 K. The denaturation transition consisted of two overlapping peaks over the pH range 5.6-7.4. Fits of the differential scanning calorimetry data to a two-state transition model showed that the low temperature transition (341.6 +/- 0.4 K at pH 7.4) consisted of two domains unfolding as a single entity while the higher temperature transition (347.8 +/- 0.6 K at pH 7.4) is of the remaining WBAI dimer unfolding into two monomers. Both transitions shift to higher temperatures and higher calorimetric enthalpies with increase in added ligand concentration at pH 7.4. Analysis of the temperature increase as a function of added ligand concentration suggests that one ligand binds to the two domains unfolding at 341.6 +/- 0.6 K and one ligand binds to the domain unfolding at 347.8 +/- 0.6 K.  相似文献   

11.
Thermodynamic analysis of carbohydrate binding by Artocarpus integrifolia (jackfruit) agglutinin (jacalin) shows that, among monosaccharides, Me alpha GalNAc (methyl-alpha-N-acetylgalactosamine) is the strongest binding ligand. Despite its strong affinity for Me alpha GalNAc and Me alpha Gal, the lectin binds very poorly when Gal and GalNAc are in alpha-linkage with other sugars such as in A- and B-blood-group trisaccharides, Gal alpha 1-3Gal and Gal alpha 1-4Gal. These binding properties are explained by considering the thermodynamic parameters in conjunction with the minimum energy conformations of these sugars. It binds to Gal beta 1-3GalNAc alpha Me with 2800-fold stronger affinity over Gal beta 1-3GalNAc beta Me. It does not bind to asialo-GM1 (monosialoganglioside) oligosaccharide. Moreover, it binds to Gal beta 1-3GalNAc alpha Ser, the authentic T (Thomsen-Friedenreich)-antigen, with about 2.5-fold greater affinity as compared with Gal beta 1-3GalNAc. Asialoglycophorin A was found to be about 169,333 times stronger an inhibitor than Gal beta 1-3GalNAc. The present study thus reveals the exquisite specificity of A. integrifolia lectin for the T-antigen. Appreciable binding of disaccharides Glc beta 1-3GalNAc and GlcNAc beta 1-3Gal and the very poor binding of beta-linked disaccharides, which instead of Gal and GalNAc contain other sugars at the reducing end, underscore the important contribution made by Gal and GalNAc at the reducing end for recognition by the lectin. The ligand-structure-dependent alterations of the c.d. spectrum in the tertiary structural region of the protein allows the placement of various sugar units in the combining region of the lectin. These studies suggest that the primary subsite (subsite A) can accommodate only Gal or GalNAc or alpha-linked Gal or GalNAc, whereas the secondary subsite (subsite B) can associate either with GalNAc beta Me or Gal beta Me. Considering these factors a likely arrangement for various disaccharides in the binding site of the lectin is proposed. Its exquisite specificity for the authentic T-antigen, Gal beta 1-3GalNAc alpha Ser, together with its virtual non-binding to A- and B-blood-group antigens, Gal beta 1-3GalNAc beta Me and asialo-GM1 should make A. integrifolia lectin a valuable probe for monitoring the expression of T-antigen on cell surfaces.  相似文献   

12.
In previous experiments the surface expression of epidermal growth factor (EGF) receptors in freshly isolated rat hepatocytes varied temperature- and time-dependently and was depleted by monensin and cycloheximide in a way suggesting that a subpopulation of these receptors are subject to constitutive cycling (Gladhaug and Christoffersen; 1988). We here report the finding that pretreatment of the hepatocytes with amiloride exerts marked effects on cellular EGF receptor movements. After 2 h incubation with 1 mM amiloride, the receptor level was approximately 270,000 sites/cell surface vs. 140,000 in the untreated cell, with no change in receptor affinity. Amiloride thus stabilized the surface EGF receptor pool at an elevated level. In cells pretreated with amiloride for 60 min, the relative endocytosis decreased from about 2.6 EGF molecules internalized per receptor during 15 min endocytosis in untreated cells to about 1.5 molecules/receptor in amiloride-treated cells. These results suggest that amiloride causes an accumulation of EGF receptors at the hepatocyte surface due to inhibition of constitutive receptor internalization. In addition, it was found that in amiloride-treated hepatocytes the phorbol ester TPA strongly inhibited high-affinity EGF binding without affecting the total surface receptor number. In control cells, TPA did not consistently affect binding. Pretreatment with amiloride prevented surface EGF receptor depletion induced by cycloheximide and puromycin, but it did not significantly inhibit surface receptor depletion caused by monensin. Although the underlying mechanism of the amiloride effect on intracellular receptor trafficking is not clear, the results provide further evidence for a continuous, ligand-independent EGF receptor cycling pathway in hepatocytes.  相似文献   

13.
The endocytosis and recycling of the human transferrin receptor were evaluated by several experimental modalities in K562 cells perturbed with 10(-5) M monensin. The work presented is an extension of a previous study demonstrating both complete inhibition of release of internalized human transferrin and a 50% reduction in the number of cell surface transferrin binding sites in K562 cells treated with monensin (Stein, B. S., Bensch, K. G., and Sussman, H. H. (1984) J. Biol. Chem. 259, 14762-14772). The data directly reveal the existence of two distinct transferrin receptor recycling pathways. One pathway is monensin-sensitive and is felt to represent recycling of transferrin receptors through the Golgi apparatus, and the other pathway is monensin-resistant and most likely represents non-Golgi-mediated transferrin receptor recycling. A transferrin-free K562 cell culture system was developed and used to demonstrate that cell surface transferrin receptors can be endocytosed without antecedent ligand binding, indicating that there are factors other than transferrin binding which regulate receptor internalization. Evidence is presented suggesting that two transferrin receptor recycling pathways are also operant in K562 cells under ligand-free conditions, signifying that trafficking of receptor into either recycling pathway is not highly ligand-dependent.  相似文献   

14.
We studied the effects of low temperature (20–37°C), monensin, chloroquine, and microtubule drugs on the cellular distribution and activity of galactosyl (Gal) receptors in isolated rat hepatocytes. After equilibration at 37°C, hepatocytes were incubated at 37°C, 31°C, 25°C, or 20°C or treated with or without inhibitors at 37°C in the absence of ligand. The cells were then assayed at 4°C for 125I-asialo-orosomucoid binding, to measure receptor activity, or 125I-anti-Gal receptor IgG binding, to measure receptor protein. Surface or total (surface and intracellular) Gal receptor activity and protein were measured on intact or digitonin-permeabilized cells, respectively. These inhibitors fell into two categories. Type I inhibitors (sub-37°C temperatures or colchicine) induced receptor redistribution but not inactivation. Treated cells lost up to 40% of surface Gal receptor activity and protein. Lost surface receptors were recovered intracellularly with no loss of receptor activity. Type II inhibitors (monensin or chloroquine) induced receptor inactivation but not redistribution. Treated cells lost 50–65% of their surface Gal receptor activity but only ? 15% of their surface receptor protein. These cells lost up to 60% of total cellular Gal receptor activity with no loss of total receptor protein. Of the total inactive Gal receptors, up to 50% and75%, respectively, were present intracellularly in monensin-and chloroquine-treated cells. Loss of ligand binding to permeable treated cells was not due to changes in receptor affinity. A third category, Type III inhibitors (metabolic energy poisons that deplete ATP) induce both Gal receptor redistribution and inactivation (Biochemistry 27:2061, 1988). We conclude that only one of the two previously characterized subpopulations of Gal receptors on hepatocytes, termed State 2 receptors (J Biol Chem 265:629, 1990), recycles constitutively. The activity and distribution of State 2 but not State 1 Gal receptors are differentially affected by these specific drugs or treatments.  相似文献   

15.
In this study we have investigated the effect that interleukin 1 (IL-1) has on cell surface IL-1 receptor expression in the murine thymoma cell line, EL4 6.1. These cells express IL-1 receptors with both high affinity (Kd = 65 pM, 986 receptors/cell) and low affinity (Kd = 14.5 nM, 10,417 receptors/cell). The high- and low-affinity receptors are indistinguishable by crosslinking studies performed at both high and low ligand concentrations. However, the two affinity states could be functionally distinguished on the basis of their internalization of ligand. Receptor-mediated endocytosis was dependent upon the concentration of ligand bound to the cells. In the presence of low IL-1 concentrations receptor-mediated endocytosis was slow, whereas at high IL-1 concentrations, endocytosis was more rapid. Furthermore, receptor-mediated endocytosis of IL-1 did not result in downregulation of surface IL-1 receptors. Indeed, both kinetic and equilibrium binding studies revealed that pre-incubation of cells with IL-1 alpha resulted in an acute upregulation of 125IL-1 alpha binding to high affinity surface receptors in a time and energy dependent manner. Examination of the association kinetics suggested that increased binding was not attributable to positive co-operativity of the high affinity IL-1 receptor, but was due to increasing IL-1 receptor number. This observation was confirmed by equilibrium binding studies. Moreover, receptor numbers were not enhanced by de novo synthesis, nor release of receptors from an intracellular pool. The observed increases in surface ligand binding were most probably due to conversion of the surface pool of low affinity receptors into high affinity receptors.  相似文献   

16.
A receptor uniquely found on the surface of rat Kupffer cells was shown previously to bind oligosaccharides terminating in galactose, N-acetylgalactosamine, and fucose. To analyze further the binding specificity of the receptor, receptor-mediated adhesion of transfected COS cells to immobilized glycolipids of known structure was measured. The glycolipid Gb4Cer (GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1Cer) was the best ligand. Gb5Cer (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1Cer) and LacCer (Gal beta 1-4Glc beta 1Cer) bound more weakly (five times less than Gb4Cer) and Gb3Cer (Gal alpha 1-4Gal beta 1-4Glc beta 1Cer), and g3Cer(GalNAc beta 1-4Gal beta 1-4Glc beta 1Cer) bound even more weakly (60 times less than Gb4Cer). Gangliosides did not support adhesion of transfected cells. The adhesion of COS cells transfected with plasmids encoding variants of the receptor was also examined. In each variant, either tryptophan 498 or 523, which are conserved in most C-type lectins, was replaced by one of several amino acids. Variants that retained binding activity had the same specificity as the normal receptor. Differences between variants were noted, however, in maximal levels of adhesion and these differences correlated with altered expression of the receptor variants in COS cells.  相似文献   

17.
Earlier studies have shown that immunoglobulin G (IgG)-coated colloidal gold particles bind to specific receptors on the macrophage surface and accumulate in coated pits. They are then internalized via endocytic vesicles and transferred to lysosomes. During this process the plasma membrane is depleted of binding sites for IgG, suggesting that both the receptor and the ligand end up in lysosomes. Here, we have examined the effects of the weak base chloroquine and the Na+-H+ ionophore monensin on endocytosis and intracellular transport of IgG-coated colloidal gold particles in cultured macrophages. The results indicate that chloroquine and monensin do not arrest uptake of IgG-coated particles bound to the cell surface. On the other hand, the drugs strongly inhibit transfer of the particles from endocytic vesicles to lysosomes, the latter marked by prior pulse-chase labeling of the cells with horseradish peroxidase. Since the main effect shared by chloroquine and monensin is to raise pH in acid compartments such as endocytic vesicles and lysosomes, the findings suggest that the transfer of IgG-coated particles into the lysosomes is a pH-dependent process. It remains to be shown whether it is the membrane fusion as such that is controlled by pH or, more specifically, the transfer of receptor-bound ligands into the lysosomes.  相似文献   

18.
We studied the effect of hyperosmotic inhibition of the clathrin coated pit cycle on the monensin- and chloroquine-dependent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes. Cells treated for 60 min without ligand at 37 degrees C with 25 microM monensin or 300 microM chloroquine in normal medium (osmolality congruent to 275 mmol/kg) bound 40-60% less 125I-asialo-orosomucoid (ASOR) at 4 degrees C than untreated cells. Cells exposed to monensin or chloroquine retained progressively more surface Gal receptor activity, however, when the osmolality of the medium was increased above 400 mmol/kg (using sucrose as osmolite) 10 min prior to and during drug treatment. Cells pretreated for 10 min with hyperosmolal media (600 mmol/kg) alone internalized less than or equal to 10% of surface-bound 125I-ASOR. Thus, the ligand-independent loss of surface Gal receptor activity on monensin- and chloroquine-treated hepatocytes requires internalization of constitutively recycling receptors via a coated pit pathway.  相似文献   

19.
We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.  相似文献   

20.
O-Linked Oligosaccharide on the 75-kDa Neurotrophin Receptor   总被引:1,自引:0,他引:1  
Abstract: Four neurotrophic factors, important for survival and function of neurons, bind a common receptor, the 75-kDa neurotrophin receptor (NTR). An O -glycosylated peptide connects the ligand-binding domain of NTR to its transmembrane helix. This peptide, the transmembrane helix, and intracellular sequences are highly conserved in vertebrate evolution. To investigate the structure and function of O -glycosylation on NTR, we produced the extracellular domains by expression in mammalian cells. Addition during biosynthesis of O-linked glycans was evaluated, and structures were characterized by lectin blotting and glycosidase digestion. Effects of desialylation, deglycosylation, and lectin attachment on the equilibrium binding constant were measured. Addition of O-linked glycans during biosynthesis was found to have a large effect on NTR structure assessed by mobility in polyacrylamide gels. NTR O-linked glycans synthesized by cultured cells had the structure (NeuNAc)1–2-Galβ1-3GalNAc. Modification of the O-linked oligosaccharide produced small, possibly significant effects on the binding constant of NTR for nerve growth factor. The results are discussed in reference to a potential role for the stalk region in ligand binding and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号