首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Outer membrane protein F, a major component of the Escherichia coli outer membrane, was crystallized for the first time in lipidic mesophase of monoolein in novel space groups, P1 and H32. Due to ease of its purification and crystallization OmpF can be used as a benchmark protein for establishing membrane protein crystallization in meso, as a "membrane lyzozyme". The packing of porin trimers in the crystals of space group H32 is similar to natural outer membranes, providing the first high-resolution insight into the close to native packing of OmpF. Surprisingly, interaction between trimers is mediated exclusively by lipids, without direct protein-protein contacts. Multiple ordered lipids are observed and many of them occupy identical positions independently of the space group, identifying preferential interaction sites of lipid acyl chains. Presence of ordered aliphatic chains close to a positively charged area on the porin surface suggests a position for a lipopolysaccharide binding site on the surface of the major E. coli porins.  相似文献   

3.
Deep rought mutants, which produce very defective lipopolysaccharides, are unable to export normal levels of porins into the outer membrane. In this study, we showed that lipopolysaccharides from such mutants were also unable to facilitate the trimerization, in vitro, of monomeric OmpF porin secreted by spheroplasts of Escherichia coli B/r. In contrast, lipopolysaccharides containing most or all of the core oligosaccharides were able to facilitate trimerization.  相似文献   

4.
The electrophoretic patterns of the outer membrane proteins of agar-entrapped Escherichia coli cells were found to be different from those of free organisms. In particular, the porin protein OmpF was underexpressed in immobilized bacteria, that displayed enhanced resistance to latamoxef.  相似文献   

5.
H Hchler  S P Cohen    S B Levy 《Journal of bacteriology》1991,173(17):5532-5538
Stable chromosomal multiple-antibiotic-resistant (Mar) mutants of Escherichia coli, derived by exposing susceptible cells to low concentrations of tetracycline or chloramphenicol, express cross-resistance to structurally unrelated antibiotics. The entire resistance phenotype is reversed to susceptibility by insertion of transposon Tn5 into a locus, designated marA, near 34 min on the chromosome (A. M. George and S. B. Levy, J. Bacteriol. 155:541-548, 1983). Strains in which 39 kbp of chromosomal DNA, including marA, had been deleted were unable to produce Mar mutants. The deletion strain could be complemented in trans by introduction of intact marA+ on plasmid F'506. Junction fragments from a strain containing marA::Tn5 were cloned, exploiting kanamycin resistance on Tn5 for selection. They were used as probes to search a phasmid library of E. coli K-12 for recombinants containing the marA+ region. Two phasmids which contained regions hybridizing to this probe were identified and shown to complement delta marA in a deletion strain. From one phasmid, several marA-containing fragments were cloned: those of greater than or equal to 7.8 kbp restored the ability to form Mar mutants in a deletion strain. These Mar mutants were shown to be dependent on the cloned marA fragment. Chromosomal as well as recombinant Mar mutants showed increased expression of a marA-specific mRNA species of about 1.4 kb, which was barely or not detectable in wild-type strains. Exposure of mutants and, to a lesser extent, parental strains to tetracycline or chloramphenicol resulted in elevated levels of mRNA which hybridized to the marA probe. These results indicate that the marA locus is needed for production of Mar mutants and is regulated, responding to at least two antibiotics to which it controls resistance.  相似文献   

6.
Molecular dynamics simulations were used to study the structure and dynamics of the Escherichia coli OmpF porin, which is composed of three identical 16-stranded beta-barrels. Simulations of the full trimer in the absence of water and the membrane led to significant contraction of the channel in the interior of each beta-barrel. With very weak harmonic constraints (0.005 kcal/mol A2/atom) applied to the main-chain C alpha atoms of the beta-barrel, the structure was stabilized without alteration of the average fluctuations. The resulting distribution of the fluctuations (small for beta-strands, large for loops and turns) is in good agreement with the x-ray B factors. Dynamic cross-correlation functions showed the importance of coupling between the loop motions and barrel flexibility. This was confirmed by the application of constraints corresponding to the observed temperature factors to the barrel C alpha atoms. With these constraints, the beta-barrel fluctuations were much smaller than the experimental values because of the intrinsic restrictions on the atomic motions, and the loop motions were reduced significantly. This result indicates that considerable care is required in introducing constraints to keep proteins close to the experimental structure during simulations, as has been done in several recent studies. Loop 3, which is thought to be important in gating the pore, undergoes a displacement that shifts it away from the x-ray structure. Analysis shows that this arises from the breakdown of a hydrogen bond network, which appears to result more from the absence of solvent that from the use of standard ionization states for the side chains of certain beta-barrel residues.  相似文献   

7.
Strains in which the lacZ gene (which specifies beta-galactosidase) is fused to a gene encoding an envelope protein often exhibit a phenotype termed overproduction lethality. In such strains, high-level synthesis of the cognate hybrid protein interferes with the process of protein export, and this leads ultimately to cell death. A variation of this phenomenon has been discovered with lacZ fusions to the gene specifying the major outer membrane porin protein OmpF. In this case, we find that lambda transducing phage carrying an ompF-lacZ fusion will not grow on a host strain that constitutively overexpresses ompF. We have exploited this observation to develop a selection for ompF mutants. Using this protocol, we have isolated mutants altered in ompF expression and have identified mutations that block OmpF export. Our results suggest that it should be possible to adapt this selection for use with other genes specifying exported proteins.  相似文献   

8.
9.
10.
A W Kloser  M W Laird    R Misra 《Journal of bacteriology》1996,178(17):5138-5143
A novel genetic scheme allowed us to isolate extragenic suppressor mutations that restored mutant OmpF assembly. One group of these mutations, termed asmB for assembly suppressor mutation B, permitted mutant OmpF assembly in a non-allele-specific manner. Genetic mapping analyses placed the asmB mutations at the 2-min region of the Escherichia coli K-12 chromosome. Further analyses revealed that the asmB mutations map within the envA (lpxC) gene, which encodes an enzyme needed for the synthesis of the lipid A moiety of lipopolysaccharide (LPS). Nucleotide sequence analysis showed that the asmB mutations caused a change from F-50 to S (F50S substitution) (asmB2 and asmB3) or a G210S substitution (asmB1) in EnvA. Cells bearing the asmB alleles displayed increased sensitivity to various hydrophobic compounds and detergents, suggesting an alteration within the outer membrane. Direct examination (of the LPS showed that its amounts were reduced by the asmB mutations, with asmB1 exerting a greater effect than asmB2 or asmB3. Thus, it appears that the asmB mutations achieve mutant OmpF assembly suppression by reducing LPS levels, which in turn may alter membrane fluidity.  相似文献   

11.
12.
13.
Regulation of ompF porin expression by salicylate in Escherichia coli.   总被引:11,自引:0,他引:11       下载免费PDF全文
J L Rosner  T J Chai    J Foulds 《Journal of bacteriology》1991,173(18):5631-5638
  相似文献   

14.
We describe the isolation and characterization of mutations in ompF that alter the pore properties of the OmpF porin. The selection makes use of the fact that maltodextrins larger than maltotriose are too large to diffuse through the normal OmpF pore. By demanding growth on maltodextrins (Dex+) in the absence of the LamB protein, which is normally required for the uptake of these large sugars, we are able to obtain ompF mutations. These include transversions, transitions and small deletions. We obtained almost exclusively ompF mutations in spite of the fact that analogous alterations in ompC can result in similar phenotypes. Fifteen independent point mutations identify residues R42, R82, D113 and R132 of the mature peptide as important in pore function. The alterations result in uncharged amino acids being substituted for charged amino acids. Growth tests, antibiotic sensitivities and rates of [14C]maltose uptake suggest that the alterations result in an increased pore size. Small deletions of six to 15 amino acid residues in the region between A108 and V133 of mature OmpF dramatically alter outer membrane permeability to hydrophobic antibiotics and detergents as well as conferring a Dex+ phenotype. We suggest that these mutations affect both the pore function and interactions with other outer membrane components. A model of OmpF protein structure based on general rules for folding membrane proteins and these mutations is presented.  相似文献   

15.
The different conformations of the outer membrane protein OmpF of Escherichia coli B were studied with immunological probes. The antigenic determinants recognized by one monoclonal (MoF3) and two polyclonal antibodies were investigated under various conditions of solubilization which modify the association of OmpF with other membrane components, such as lipopolysaccharide. Several polymeric forms of the protein could be detected after extraction at 37 degrees C or 56 degrees C. The monoclonal antibody, which is specific to an exposed region of native OmpF, recognized various trimeric forms in an immunoprecipitation assay. Under the same conditions, the binding of polyclonal antibodies apparently induced strong conformational rearrangements, since the pattern of trimeric forms detected was greatly modified. The conversion of newly synthesized monomers of OmpF to the various trimer forms was investigated using these antibodies. The trimerization occurred rapidly but the appearance of the native conformation of OmpF was delayed. Some additional step was required to expose the MoF3-specific antigenic site at the surface of the trimeric form. These results are discussed in relation to the structure of OmpF and its association with lipopolysaccharide in the outer membrane.  相似文献   

16.
Assembly of the OmpF and LamB proteins was kinetically retarded in deep rough lipopolysaccharide mutants of Escherichia coli K-12. OmpF assembly was affected at the step of conversion of metastable trimers to stable trimers, whereas LamB assembly was influenced both at the monomer-to-metastable trimer and metastable-to-stable trimer steps. These assembly defects were reversed in the presence of the sfaA1 and sfaB3 suppressor alleles, which were isolated by using ompF assembly mutants.  相似文献   

17.
We present the molecular characterization of the asmA gene, whose product is involved in the assembly of outer membrane proteins in Escherichia coli K-12. The asmA locus was initially identified as a site for suppressor mutations of an assembly defective OmpF315. Our data suggest that these suppressor mutations either completely abolish or reduce asmA expression and can be complemented in trans by piasmid clones carrying asmA sequences. The recessive nature of asmA suppressor mutations suggests that the functional AsmA protein participates in Inhibiting the assembly of OmpF315 and other mutant OmpFs. As the assembly of wild-type and parental OmpF proteins was not affected by asmA mutations, AsmA must provide an environment refractory only to the assembly of mutant OmpF proteins. However, we cannot completely rule out the possibility that AsmA plays a minor role in the assembly of wild-type and parental OmpF in wild-type cells. The presence of a putative signal sequence within the amino-terminal sequence of AsmA suggests that it is either a periplasmic or an outer membrane protein. This predicted location of AsmA is compatible with its role in the assembly of outer membrane proteins.  相似文献   

18.
19.
H Okusu  D Ma    H Nikaido 《Journal of bacteriology》1996,178(1):306-308
Multiple-antibiotic-resistance (Mar) mutants of Escherichia coli are resistant to a wide variety of antibiotics, and increased active efflux is known to be responsible for the resistance to some drugs. The identity of the efflux system, however, has remained unknown. By constructing an isogenic set of E. coli K-12 strains, we showed that the marR1 mutation was incapable of increasing the resistance level in the absence of the AcrAB efflux system. This experiment identified the AcrAB system as the major pump responsible for making the Mar mutants resistant to many agents, including tetracycline, chloramphenicol, ampicillin, nalidixic acid, and rifampin.  相似文献   

20.
A recent molecular dynamics study questioned the protonation state and physiological role of aspartate 127 (D127) of E. coli porin OmpF. To address that question we isolated two OmpF mutants with D127 either neutralized (D127N) or replaced by a positively charged lysine (D127K). The charge state of the residue at position 127 has clear effects on both conductance and selectivity. The D127K but not the D127N mutant expresses resilient conductance and selectivity fluctuations. These fluctuations reflect, we think, either changes in the ionization state of K127 and/or transitions between unstable subconformations as induced by the electrostatic repulsion between two positively charged residues, K127 and the nearby R167. Our results slightly favor the view that in WT OmpF residue D127 is deprotonated. As for the role of D127 in OmpF functionality, the gating of both mutants shows very similar sensitivity toward voltage as WT OmpF. Moreover, the current fluctuations of the D127K mutant were observed also in the absence of an applied electric field. We therefore dismiss D127 as a key residue in the control mechanism of the voltage-dependent gating of OmpF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号