首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.  相似文献   

2.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

3.
吴毓  赵宝昌  王继红  赵鹏  吴妍宁  崔秀云 《遗传》2005,27(2):249-254
人胎盘核糖核酸酶抑制因子(HRI)是一种存在于细胞浆中的50 kDa的酸性蛋白质,富含亮氨酸和半胱氨酸。作为胞浆蛋白可保护细胞不受外来的胰RNase的侵袭。HRI有32个半胱氨酸残基,且多数半胱氨酸残基是成对的并在序列上相连。文章用丙氨酸同时取代cys328/cys329,并将此双突变的HRI的cDNA片段构建于质粒pPIC9K,电击转化入毕赤酵母(Pichia pastoris)GS115中,进行分泌型表达。对表达产物进行亲和层析纯化及抗氧化活性检测。实验结果表明,双点突变后的HRI对RNase A的亲和力几乎没有影响,但其抗氧化能力却增加7~9倍。此种抗氧化能力的提高可能是因为在cys328-cys329之间不能形成二硫键而稳定了HRI的三维结构所致。  相似文献   

4.
Johnson RJ  Lavis LD  Raines RT 《Biochemistry》2007,46(45):13131-13140
The evolutionary rate of proteins involved in obligate protein-protein interactions is slower and the degree of coevolution higher than that for nonobligate protein-protein interactions. The coevolution of the proteins involved in certain nonobligate interactions is, however, essential to cell survival. To gain insight into the coevolution of one such nonobligate protein pair, the cytosolic ribonuclease inhibitor (RI) proteins and secretory pancreatic-type ribonucleases from cow (Bos taurus) and human (Homo sapiens) were produced in Escherichia coli and purified, and their physicochemical properties were analyzed. The two intraspecies complexes were found to be extremely tight (bovine Kd = 0.69 fM; human Kd = 0.34 fM). Human RI binds to its cognate ribonuclease (RNase 1) with 100-fold greater affinity than to the bovine homologue (RNase A). In contrast, bovine RI binds to RNase 1 and RNase A with nearly equal affinity. This broader specificity is consistent with there being more pancreatic-type ribonucleases in cows (20) than humans (13). Human RI (32 cysteine residues) also has 4-fold less resistance to oxidation by hydrogen peroxide than does bovine RI (29 cysteine residues). This decreased oxidative stability of human RI, which is caused largely by Cys74, implies a larger role for human RI as an antioxidant. The conformational and oxidative stabilities of both RIs increase upon complex formation with ribonucleases. Thus, RI has evolved to maintain its inhibition of invading ribonucleases, even when confronted with extreme environmental stress. That role appears to take precedence over its role in mediating oxidative damage.  相似文献   

5.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

6.
Adjacent cysteine residues as a redox switch.   总被引:1,自引:0,他引:1  
Oxidation of adjacent cysteine residues into a cystine forms a strained eight-membered ring. This motif was tested as the basis for an enzyme with an artificial redox switch. Adjacent cysteine residues were introduced into two different structural contexts in ribonuclease A (RNase A) by site-directed mutagenesis to produce the A5C/A6C and S15C/S16C variants. Ala5 and Ala6 are located in an alpha-helix, whereas Ser15 and Ser16 are located in a surface loop. Only A5C/A6C RNase A had the desired property. The catalytic activity of this variant decreases by 70% upon oxidation. The new disulfide bond also decreases the conformational stability of the A5C/A6C variant. Reduction with dithiothreitol restores full enzymatic activity. Thus, the insertion of adjacent cysteine residues in a proper context can be used to modulate enzymatic activity.  相似文献   

7.
Human RNase κ is an endoribonuclease expressed in almost all tissues and organs and belongs to a highly conserved protein family bearing representatives in all metazoans. To gain insight into the role of cysteine residues in the enzyme activity or structure, a recombinant active form of human RNase κ expressed in Pichia pastoris was treated with alkylating agents and dithiothreitol (DTT). Our results showed that the human enzyme is inactivated by DDT, while it remains fully active in the presence of alkylating agents. The unreduced recombinant protein migrates on SDS/PAGE faster than the reduced form. This observation in combination with the above findings indicated that human RNase κ does not form homodimers through disulfide bridges, and cysteine residues are not implicated in RNA catalysis but participate in the formation of intramolecular disulfide bond(s) essential for its ribonucleolytic activity. The role of the cysteine residues was further investigated by expression and study of Cys variants. Ribonucleolytic activity experiments and SDS/PAGE analysis of the wild-type and mutant proteins under reducing and non-reducing conditions demonstrated that Cys7, Cys14 and Cys85 are not essential for RNase activity. On the other hand, replacement of Cys6 or Cys69 with serine led to a complete loss of catalytic activity, indicating the necessity of these residues for maintaining an active conformation of human RNase κ by forming a disulfide bond. Due to the absolute conservation of these cysteine residues, the Cys6-Cys69 disulfide bond is likely to exist in all RNase κ family members.  相似文献   

8.
Onconasetrade mark, a homolog of bovine pancreatic ribonuclease A (RNase A) with high conformational stability, is cytotoxic and has efficacy as a cancer chemotherapeutic agent. Unlike wild-type RNase A, the G88R variant is toxic to cancer cells. Here, variants in which disulfide bonds were removed from or added to G88R RNase A were used to probe the relationship between conformational stability and cytotoxicity in a methodical manner. The conformational stability of the C40A/G88R/C95A and C65A/C72A/G88R variants is less than that of G88R RNase A. In contrast, a new disulfide bond that links the N and C termini (residues 4 and 118) increases the conformational stability of G88R RNase A and C65A/C72A/G88R RNase A. These changes have little effect on the ribonucleolytic activity of the enzyme or on its ability to evade the cytosolic ribonuclease inhibitor protein. The changes do, however, have a substantial effect on toxicity toward human erythroleukemia cells. Specifically, conformational stability correlates directly with cytotoxicity as well as with resistance to proteolysis. These data indicate that conformational stability is a key determinant of RNase A cytotoxicity and suggest that cytotoxicity relies on avoiding proteolysis. This finding suggests a means to produce new cancer chemotherapeutic agents based on mammalian ribonucleases.  相似文献   

9.
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.  相似文献   

10.
Liu J  Guo C  Yao Y  Lin D 《Biochimie》2008,90(11-12):1637-1646
Three cysteine residues, Cys(65), Cys(89), and Cys(186) in lipocalin-type prostaglandin D synthase (L-PGDS), are conserved among all species and the disulfide bond between Cys(89) and Cys(186) is highly conserved among most, but not all, lipocalins. In this study, four rat L-PGDS variants were constructed by site-directed mutagenesis, and the conserved disulfide bond in several variants was removed by substituting cysteine with alanine. The effects of removing this disulfide bond on their biological characteristics were investigated. The NMR experiments indicated that the removal of disulfide did not change their conformations significantly. However, both thermal-induced and urea-induced unfolding experiments showed that the stabilities of enzymes without the disulfide bond decreased significantly. Moreover, the ligand-binding affinities of these variants were assessed by fluorescence experiments. Dissociation constants (K(d)) of 0.668, 0.689, 0.543 and 0.571 microM were obtained for ANS binding to wild-type rat L-PGDS, C(65)A, C(186)A, and C(89,186)A variants, respectively, and 71.2 and 62.3 nM for retinoic acid binding to wild-type rat L-PGDS and the C(186)A variant, respectively. These results suggested that the removal of the disulfide bond slightly increased the affinities for ligand binding by changing the hydrophobic regions. This study may offer valuable information for further studies on other rat lipocalins.  相似文献   

11.
Ruoppolo M  Vinci F  Klink TA  Raines RT  Marino G 《Biochemistry》2000,39(39):12033-12042
The eight cysteine residues of ribonuclease A form four disulfide bonds in the native protein. We have analyzed the folding of three double RNase A mutants (C65A/C72A, C58A/C110A, and C26A/C84A, lacking the C65-C72, C58-C110, and C26-C84 disulfide bonds, respectively) and two single mutants (C110A and C26A), in which a single cysteine is replaced with an alanine and the paired cysteine is present in the reduced form. The folding of these mutants was carried out in the presence of oxidized and reduced glutathione, which constitute the main redox agents present within the ER. The use of mass spectrometry in the analysis of the folding processes allowed us (i) to follow the formation of intermediates and thus the pathway of folding of the RNase A mutants, (ii) to quantitate the intermediates that formed, and (iii) to compare the rates of formation of intermediates. By comparison of the folding kinetics of the mutants with that of wild-type RNase A, the contribution of each disulfide bond to the folding process has been evaluated. In particular, we have found that the folding of the C65A/C72A mutant occurs on the same time scale as that of the wild-type protein, thus suggesting that the removal of the C65-C72 disulfide bond has no effect on the kinetics of RNase A folding. Conversely, the C58A/C110A and C26A/C84A mutants fold much more slowly than the wild-type protein. The removal of the C58-C110 and C26-C84 disulfide bonds has a dramatic effect on the kinetics of RNase A folding. Results described in this paper provide specific information about conformational folding events in the regions involving the mutated cysteine residues, thus contributing to a better understanding of the complex mechanism of oxidative folding.  相似文献   

12.
Human RNase H1 is active only under reduced conditions. Oxidation as well as N-ethylmaleimide (NEM) treatment of human RNase H1 ablates the cleavage activity. The oxidized and NEM alkylated forms of human RNase H1 exhibited binding affinities for the heteroduplex substrate comparable with the reduced form of the enzyme. Mutants of human RNase H1 in which the cysteines were either deleted or substituted with alanine exhibited cleavage rates comparable with the reduced form of the enzyme, suggesting that the cysteine residues were not required for catalysis. The cysteine residues responsible for the observed redox-dependent activity of human RNase H1 were determined by site-directed mutagenesis to involve Cys(147) and Cys(148). The redox states of the Cys(147) and Cys(148) residues were determined by digesting the reduced, oxidized, and NEM-treated forms of human RNase H1 with trypsin and analyzing the cysteine containing tryptic fragments by micro high performance liquid chromatography-electrospray ionization-Fourier transform ion cyclotron mass spectrometry. The tryptic fragment Asp(131)-Arg(153) containing Cys(147) and Cys(148) was identified. The mass spectra for the Asp(131)-Arg(153) peptides from the oxidized and reduced forms of human RNase H1 in the presence and absence of NEM showed peptide masses consistent with the formation of a disulfide bond between Cys(147) and Cys(148). These data show that the formation of a disulfide bond between adjacent Cys(147) and Cys(148) residues results in an inactive enzyme conformation and provides further insights into the interaction between human RNase H1 and the heteroduplex substrate.  相似文献   

13.
Alkylation and oxidation of cysteine residues significantly decrease the catalytic activity and stimulate the degradation of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We analyzed the role of vicinal cysteine residues in redox regulation of RuBisCO from Synechocystis sp. strain PCC 6803. Cys172 and Cys192, which are adjacent to the catalytic site, and Cys247, which cross-links two large subunits, were replaced by alanine. Whereas all mutant cells (C172A, C192A, C172A-C192A, and C247A) and the wild type grew photoautotrophically at similar rates, the maximal photosynthesis rates of C172A mutants decreased 10 to 20% as a result of 40 to 60% declines in RuBisCO turnover number. Replacement of Cys172, but not replacement of Cys192, prominently decreased the effect of cysteine alkylation or oxidation on RuBisCO. Oxidants that react with vicinal thiols had a less inhibitory effect on the activity of either the C172A or C192A enzyme variants, suggesting that a disulfide bond was formed upon oxidation. Thiol oxidation induced RuBisCO dissociation into subunits. This effect was either reduced in the C172A and C192A mutant enzymes or eliminated by carboxypentitol bisphosphate (CPBP) binding to the activated enzyme form. The CPBP effect presumably resulted from a conformational change in the carbamylated CPBP-bound enzyme, as implied from an alteration in the electrophoretic mobility. Stress conditions, provoked by nitrate deprivation, decreased the RuBisCO contents and activities in the wild type and in the C192A and C247A mutants but not in the C172A and C172A-C192A mutants. These results suggest that although Cys172 does not participate in catalysis, it plays a role in redox regulation of RuBisCO activity and degradation.  相似文献   

14.
The facile modulation of biological processes is an important goal of biological chemists. Here, a general strategy is presented for controlling the catalytic activity of an enzyme. This strategy is demonstrated with ribonuclease A (RNase A), which catalyzes the cleavage of RNA. The side-chain amino group of Lys41 donates a hydrogen bond to a nonbridging oxygen in the transition state for RNA cleavage. Replacing Lys41 with a cysteine residue is known to decrease the value of k(cat)/K(m) by 10(5)-fold. Forming a mixed disulfide between the side chain of Cys41 of K41C RNase A and cysteamine replaces the amino group and increases k(cat)/K(m) by 10(3)-fold. This enzyme, which contains a mixed disulfide, is readily deactivated by dithiothreitol. Forming a mixed disulfide between the side chain of Cys41 and mercaptopropyl phosphate, which is designed to place a phosphoryl group in the active site, decreases activity by an additional 25-fold. This enzyme, which also contains a mixed disulfide, is reactivated in the presence of dithiothreitol and inorganic phosphate (which displaces the pendant phosphoryl group from the active site). An analogous control mechanism could be installed into the active site of virtually any enzyme by replacing an essential residue with a cysteine and elaborating the side chain of that cysteine into appropriate mixed disulfides.  相似文献   

15.
Onconase((R)) (ONC) is a homolog of ribonuclease A (RNase A) that has unusually high conformational stability and is toxic to human cancer cells in vitro and in vivo. ONC and its amphibian homologs have a C-terminal disulfide bond, which is absent in RNase A. Replacing this cystine with a pair of alanine residues greatly decreases the conformational stability of ONC. In addition, the C87A/C104A variant is 10-fold less toxic to human leukemia cells. These data indicate that the synapomorphic disulfide bond of ONC is an important determinant of its cytotoxicity.  相似文献   

16.
Ribonuclease U2, secreted by the smut fungus Ustilago sphaerogena, is a cyclizing ribonuclease that displays a rather unusual specificity within the group of microbial extracellular RNases, best represented by RNase T1. Superposition of the three-dimensional structures of RNases T1 and U2 suggests that the RNase U2 His 101 would be the residue equivalent to the RNase T1 catalytically essential His 92. RNase U2 contains three disulfide bridges but only two of them are conserved among the family of fungal extracellular RNases. The non-conserved disulfide bond is established between Cys residues 1 and 54. Mispairing of the disulfide network due to the presence of two consecutive Cys residues (54 and 55) has been invoked to explain the presence of wrongly folded RNase U2 species when produced in Pichia pastoris. In order to study both hypotheses, the RNase U2 H101Q and C1/54S variants have been produced, purified, and characterized. The results obtained support the major conclusion that His 101 is required for proper protein folding when secreted by the yeast P. pastoris. On the other hand, substitution of the first Cys residue for Ser results in a mutant version which is more efficiently processed in terms of a more complete removal of the yeast α-factor signal peptide. In addition, it has been shown that elimination of the Cys 1–Cys 54 disulfide bridge does not interfere with RNase U2 proper folding, generating a natively folded but much less stable protein.  相似文献   

17.
Ribonucleases can be cytotoxic if they retain their ribonucleolytic activity in the cytosol. The cytosolic ribonucleolytic activity of ribonuclease A (RNase A) and other pancreatic-type ribonucleases is limited by the presence of excess ribonuclease inhibitor (RI). RI is a 50-kDa cytosolic scavenger of pancreatic-type ribonucleases that competitively inhibits their ribonucleolytic activity. RI had been overproduced as inclusion bodies, but its folding in vitro is inefficient. Here, porcine RI (pRI) was overproduced in Escherichia coli using the trp promoter and minimal medium. This expression system maintains pRI in the soluble fraction of the cytosol. pRI was purified by affinity chromatography using immobilized RNase A and by anion-exchange chromatography. The resulting yield of 15 mg of purified RI per liter of culture represents a 60-fold increase relative to previously reported recombinant DNA systems. Differential scanning calorimetry was used to study the thermal denaturation of pRI, RNase A, and the pRI-RNase A complex. The conformational stability of the complex is greater than that of the individual components.  相似文献   

18.
A growing number of pancreatic-type ribonucleases (RNases) present cytotoxic activity against malignant cells. The cytoxicity of these enzymes is related to their resistance to the ribonuclease protein inhibitor (RI). In particular, bovine seminal ribonuclease (BS-RNase) is toxic to tumor cells both in vitro and in vivo. BS-RNase is a covalent dimer with two intersubunit disulfide bridges between Cys(31) of one chain and Cys(32) of the second and vice versa. The native enzyme is an equilibrium mixture of two isomers, MxM and M=M. In the former the two subunits swap their N-terminal helices. The cytotoxic action is a peculiar property of MxM. In the reducing environment of cytosol, M=M dissociates into monomers, which are strongly inhibited by RI, whereas MxM remains as a non-covalent dimer (NCD), which evades RI. We have solved the crystal structure of NCD, carboxyamidomethylated at residues Cys(31) and Cys(32) (NCD-CAM), in a complex with 2'-deoxycitidylyl(3'-5')-2'-deoxyadenosine. The molecule reveals a quaternary structural organization much closer to MxM than to other N-terminal-swapped non-covalent dimeric forms of RNases. Model building of the complexes between these non-covalent dimers and RI reveals that NCD-CAM is the only dimer equipped with a quaternary organization capable of interfering seriously with the binding of the inhibitor. Moreover, a detailed comparative structural analysis of the dimers has highlighted the residues, which are mostly important in driving the quaternary structure toward that found in NCD-CAM.  相似文献   

19.
20.
Genetic selection for critical residues in ribonucleases   总被引:3,自引:0,他引:3  
Homologous mammalian proteins were subjected to an exhaustive search for residues that are critical to their structure/function. Error-prone polymerase chain reactions were used to generate random mutations in the genes of bovine pancreatic ribonuclease (RNase A) and human angiogenin, and a genetic selection based on the intrinsic cytotoxicity of ribonucleolytic activity was used to isolate inactive variants. Twenty-three of the 124 residues in RNase A were found to be intolerant to substitution with at least one particular amino acid. Twenty-nine of the 123 residues in angiogenin were likewise intolerant. In both RNase A and angiogenin, only six residues appeared to be wholly intolerant to substitution: two histidine residues involved in general acid/base catalysis and four cysteine residues that form two disulfide bonds. With few exceptions, the remaining critical residues were buried in the hydrophobic core of the proteins. Most of these residues were found to tolerate only conservative substitutions. The importance of a particular residue as revealed by this genetic selection correlated with its sequence conservation, though several non-conserved residues were found to be critical for protein structure/function. Despite voluminous research on RNase A, the importance of many residues identified herein was unknown, and those can now serve as targets for future work. Moreover, a comparison of the critical residues in RNase A and human angiogenin, which share only 35% amino acid sequence identity, provides a unique perspective on the molecular evolution of the RNase A superfamily, as well as an impetus for applying this methodology to other ribonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号