首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrients, such as glucose and fatty acids, have a dual effect on pancreatic beta-cell function. Acute administration of high glucose concentrations to pancreatic beta-cells stimulates insulin secretion. In addition, short term exposure of this cell type to dietary fatty acids potentiates glucose-induced insulin release. On the other hand, long-term exposure to these nutrients causes impaired insulin secretion, characterized by elevated exocytosis at low concentrations of glucose and no response when glucose increases in the extracellular medium. In addition, other phenotypic changes are observed in these conditions. One major step in linking these phenotypic changes to the diabetic pathology has been the recognition of both glucose and fatty acids as key modulators of beta-cell gene expression. This could explain the adaptative response of the cell to sustained nutrient concentration. Once this phase is exhausted, the beta-cell becomes progressively unresponsive to glucose and this alteration is accompanied by the irreversible induction of apoptotic programs. The aim of this review is to present actual data concerning the development of the toxicity to the main nutrients glucose and fatty acids in the pancreatic beta-cell and to find a possible link to the development of type 2 diabetes.  相似文献   

2.
3.
BACKGROUND: An increasing number of women are being vaccinated during child-bearing years, including vaccination with BioThrax® (Anthrax Vaccine Adsorbed, or AVA). As only a limited number of studies exist in humans that have examined the effects of AVA on reproductive health, this study was conducted in order to evaluate the impact AVA vaccination may have on pregnant female rabbits and their offspring. METHODS: Two hundred female rabbits were vaccinated with saline, adjuvant, or AVA twice prior to mating and on one of two occasions during gestation, in order to have exposure to the antigen during organogenesis. Blood samples were collected from does and fetuses/kits to assess the development and in utero transfer of antibodies to Bacillus anthracisprotective antigen (anti-PA IgG). Half of the does underwent Caesarean-sectioning on gestation day 29 and a gross necropsy was performed on both the does and their fetuses. The other half were allowed to naturally deliver and gross necropsy of the does and their kits was performed on lactation day 29. RESULTS: ELISA results showed that anti-PA IgG was generated by the does and passed to the fetuses/kits at detectable levels. CONCLUSIONS: AVA directly, or indirectly through the production of anti-PA IgG, did not appear to have an adverse effect on the pregnant females or their offspring, as measured by mating and fertility indices, natural delivery observations, clinical signs, gross lesions, in utero growth and survival, morphological development, or kit viability. Birth Defects Res (Part B) 86:370–376, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

4.
The use of mysid shrimp, particularly the genusMysidopsis, along with specific testing procedures, has become accepted in aquatic toxicology. Investigators have developed methodologies for both culture and testing of these organisms. Acute and chronic (life cycle) toxicity tests in addition to dredge spoil and effluent tests with mysids are now becoming common. Attempts have been made to use mysids as test organisms in behavioral, physiological, nutritional, and food-chain studies. In general,Mysidopsis spp. have been shown to be as sensitive or more sensitive to toxic substances than other marine species tested. The ease of handling and culture, relative sensitivity to toxicants, short life cycle, small size and direct larval development make these organisms desirable for research purposes. Continued research using mysid species will probably demonstrate even greater usefulness of these organisms in assessment of pollutant impacts on estuarine or marine communities.  相似文献   

5.
6.
This study has found that the Maltose binding protein Aβ42 fusion protein (MBP-Aβ42) forms soluble oligomers while the shorter MBP-Aβ16 fusion and control MBP did not. MBP-Aβ42, but neither MBP-Aβ16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-Aβ42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further Aβ42 characterization.  相似文献   

7.
Alzheimer's disease (AD) is the most common cause of dementia, and amyloid-β (Aβ) plaques and tau-containing tangles are its histopathological hallmark lesions. These do not occur at random; rather, the neurodegenerative process is stereotyped in that it is initiated in the entorhinal cortex and hippocampal formation. Interestingly, it is the latter brain area where the calcium-sensing enzyme hippocalcin is highly expressed. Because calcium deregulation is a well-established pathomechanism in AD, we aimed to address the putative role of hippocalcin in human AD brain and transgenic mouse models. We found that hippocalcin levels are increased in human AD brain and in Aβ plaque-forming APP23 transgenic mice compared to controls. To determine the role of hippocalcin in Aβ toxicity, we treated primary cultures derived from hippocalcin knockout (HC KO) mice with Aβ and found them to be more susceptible to Aβ toxicity than controls. Likewise, treatment with either thapsigargin or ionomycin, both known to deregulate intracellular calcium levels, caused an increased toxicity in hippocampal neurons from HC KO mice compared to wild-type. We found further that mitochondrial complex I activity increased from 3 to 6months in hippocampal mitochondria from wild-type and HC KO mice, but that the latter exhibited a significantly stronger aging phenotype than wild-type. Aβ treatment induced significant toxicity on hippocampal mitochondria from HC KO mice already at 3months of age, while wild-type mitochondria were spared. Our data suggest that hippocalcin has a neuroprotective role in AD, presenting it as a putative biomarker.  相似文献   

8.
Accumulation evidence shows that β-amyloid (Aβ) is a neurotoxic and accumulation of Aβ is responsible for the pathology of Alzheimer''s disease (AD). However, it is currently not fully understood what makes Aβ toxic and accumulated. Previous studies demonstrate that Aβ is a suitable substrate for glycation, producing one form of the advanced glycation endproducts (AGEs). We speculated that Aβ-AGE formation may exacerbate the neurotoxicity. To explore whether the Aβ-AGE is more toxic than the authentic Aβ and to understand the molecular mechanisms, we synthesized glycated Aβ by incubating Aβ with methylglyoxal (MG) in vitro and identified the formation of glycated Aβ by fluorescence spectrophotometer. Then, we treated the primary hippocampal neurons cultured 8 days in vitro with Aβ-AGE or Aβ for 24 h. We observed that glycation exacerbated neurotoxicity of Aβ with upregulation of receptor for AGE (RAGE) and activation of glycogen synthase kinase-3 (GSK-3), whereas simultaneous application of RAGE antibody or GSK-3 inhibitor reversed the neuronal damages aggravated by glycated Aβ. Thereafter, we found that Aβ is also glycated with an age-dependent elevation of AGEs in Tg2576 mice, whereas inhibition of Aβ-AGE formation by subcutaneously infusion of aminoguanidine for 3 months significantly rescued the early cognitive deficit in mice. Our data reveal for the first time that the glycated Aβ is more toxic. We propose that the glycated Aβ with the altered secondary structure may be a more suitable ligand than Aβ for RAGE and subsequent activation of GSK-3 that can lead to cascade pathologies of AD, therefore glycated Aβ may be a new therapeutic target for AD.  相似文献   

9.
Background, aim and scope  In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. Materials and methods  A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Results  Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. Discussion  The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. Conclusions  USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. Recommendations and perspectives  We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Ralph K. RosenbaumEmail:
  相似文献   

10.
Molecular and Cellular Biochemistry -  相似文献   

11.
Pretreatment with recombinant human interleukin-1β (IL-1) protected normal BALB/c mice from the lethal effect adriamycin (ADM) of related to dose and frequency of administration. Posttreatment with IL-1 failed to protect. Neutrophil and platelet counts after the administration of ADM (16mg/kg) did not differ between the group with and that without IL-1 pretreatment, whereas lipid peroxide levels in the heart were reduced in the group pretreated with IL-1. It appears that the chemoprotection mechanism of IL-1 lies in the prevention of cardiotoxicity due to ADM-induced free radicals.  相似文献   

12.
13.
Cobalamin neuropathy. Is S-adenosylhomocysteine toxicity a factor?   总被引:1,自引:0,他引:1       下载免费PDF全文
Cobalamin neuropathy was produced in cape fruit bats (Rousettus aegyptiacus) by a cobalamin-free diet combined with intermittent exposure to nitrous oxide, which inactivates cobalamin. There were no significant differences in S-adenosylmethionine/S-adenosylhomocysteine ratios in the central nervous system of cobalamin-deficient and cobalamin-replete bats. Taken with other data there are no grounds of support for a hypothesis that cobalamin neuropathy is the result of impaired methylation, however produced.  相似文献   

14.
Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein-induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein-expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein-induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein-induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein.  相似文献   

15.
Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's Disease (AD), for reasons that are not clear. The association could indicate that the duration or degree of exposure to toxic proteins is important for pathology, or that age itself increases susceptibility to protein toxicity. Using an inducible Drosophila model of AD, we investigated these possibilities by varying the expression of an Aβ42 transgene in neurons at different adult ages and measuring the effects on Aβ42 levels and associated pathological phenotypes. Acute induction of Arctic Aβ42 in young adult flies resulted in rapid expression and clearance of mRNA and soluble Arctic Aβ42 protein, but in irreversible expression of insoluble Arctic Aβ42 peptide. Arctic Aβ42 peptide levels accumulated with longer durations of induction, and this led to a dose-dependent reduction in negative geotaxis and lifespan. For a standardised level of mRNA expression, older flies had higher levels of Arctic Aβ42 peptide and associated toxicity, and this correlated with an age-dependent reduction in proteasome activity. Equalising Aβ42 protein at different ages shortened lifespan in correlation with the duration of exposure to the peptide, suggesting that Aβ42 expression accumulates damage over time. However, the relative reduction in lifespan compared to controls was greater in flies first exposed to the peptide at older ages, suggesting that ageing itself also increases susceptibility to Aβ42 toxicity. Indeed older flies were more vulnerable to chronic Aβ42 toxicity even with a much lower lifetime exposure to the peptide. Finally, the persistence of insoluble Aβ42 in both young and old induced flies suggests that aggregated forms of the peptide cause toxicity in later life. Our results suggest that reduced protein turnover, increased duration of exposure and increased vulnerability to protein toxicity at later ages in combination could explain the late age-of-onset of neurodegenerative phenotypes.  相似文献   

16.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, formation of the extracellular amyloid β (Aβ42) plaques, neuronal and synapse loss, and activated microglia and astrocytes. Extracellular chaperones, which are known to inhibit amyloid fibril formation and promote clearance of misfolded aggregates, have recently been shown to reduce efficiently the toxicity of HypF-N misfolded oligomers to immortalised cell lines, by binding and clustering them into large species. However, the role of extracellular chaperones on Aβ oligomer toxicity remains unclear, with reports often appearing contradictory. In this study we microinjected into the hippocampus of rat brains Aβ42 oligomers pre-incubated for 1 h with two extracellular chaperones, namely clusterin and α2-macroglobulin. The chaperones were found to prevent Aβ42-induced learning and memory impairments, as assessed by the Morris Water Maze test, and reduce Aβ42-induced glia inflammation and neuronal degeneration in rat brains, as probed by fluorescent immunohistochemical analyses. Moreover, the chaperones were able to prevent Aβ42 colocalisation with PSD-95 at post-synaptic terminals of rat primary neurons, suppressing oligomer cytotoxicity. All such effects were not effective by adding pre-formed oligomers and chaperones without preincubation. Molecular chaperones have therefore the potential to prevent the early symptoms of AD, not just by inhibiting Aβ42 aggregation, as previously demonstrated, but also by suppressing the toxicity of Aβ42 oligomers after they are formed. These findings elect them as novel neuroprotectors against amyloid-induced injury and excellent candidates for the design of therapeutic strategies against AD.  相似文献   

17.
The effect of Dithane M-45 (dithiocarbamate fungicide; active substance: mancozeb) was studied on microarthropod fauna inhabiting dead wood. Although the exposure was almost never 100% lethal for the majority of observed taxa, almost all (Mesostigmata, Oribatida, some Uropodina, Actinedida, Collembola and Diplopoda) showed very high correlation between concentration of the fungicide and mortality (r > 0.86). Only Stigmaeidae showed low correlation (r = 0.293). For the majority of taxa LC50 values were close to the concentrations used during agrochemical activities in woods. Only Trachytes aegrota showed full susceptibility to the fungicide within the range of recommended field concentrations used in forestry (characterised by the low LC95 value). Tolerance of mesostigmatid and oribatid mites was found to differ between juveniles and adults, but not consistently. Related Uropodina species varied in susceptibility to the fungicide.  相似文献   

18.
A1 toxicity in yeast. A role for Mg?   总被引:1,自引:0,他引:1       下载免费PDF全文
We have established conditions in which soluble Al is toxic to the yeast Saccharomyces cerevisiae. The major modifications to a standard synthetic medium were lowering the pH and the concentration of Mg ions. Alterations to the PO4, Ca, or K concentration had little effect on toxicity. Organic acids known to chelate Al reduced its toxicity, suggesting that Al3+ is the toxic Al species. The unique ability of Mg ions to ameliorate Al toxicity led us to investigate the hypothesis that Al inhibits Mg uptake by yeast. Yeast cells accumulate Mg, Co, Zn, Ni, and Mn ions via the same transport system (G.F. Fuhrmann, A. Rothstein [1968] Biochim Biophys Acta 163: 325-330). Al3+ inhibited the accumulation of 57Co2+ by yeast cells more effectively than Ga, La, or Mg. In addition, a mutant yeast strain with a defect in divalent cation uptake proved to be more sensitive to Al than a wild-type strain. Taken together, these results suggest that Al may cause Mg deficiency in yeast by blocking Mg transport. We discuss the relevance of yeast as a model for the study of Al toxicity in plant systems.  相似文献   

19.
β-amyloid (Aβ) is the primary protein component of senile plaques in Alzheimer's disease and is believed to be associated with neurotoxicity in the disease. We and others have shown that Aβ binds with relatively high affinity to clustered sialic acid residues on cell surfaces and that removal of cell surface sialic acids attenuate Aβ toxicity. In the current work, we have prepared sialic acid conjugated dendrimeric polymers and assessed the ability of these sialic acid conjugated dendrimers to prevent Aβ toxicity. Flow cytometry was used to analyze viability of SH-SY5Y neuroblastoma cells and the effects of soluble and clustered sialic acid mimics on Aβ cell toxicity. Soluble sialic acid attenuation of Aβ induced toxicity was effective only at high sialic acid concentrations and low Aβ concentration. The sialic acid conjugated dendrimeric polymers were able to attenuate Aβ toxicity at micromolar concentrations, or approximately three orders of magnitude lower concentrations than the soluble sialic acid. The toxicity prevention properties of the sialic acid modified dendrimers were a function of dendrimer size. This work may lead to the development of new classes of therapeutics for the prevention of Aβ toxicity.  相似文献   

20.
Most biologists agree that at each succeeding level of biological organization new properties appear that would not have been evident even by the most intense and careful examination of lower levels of organization. These levels might be crudely characterized as subcellular, cellular, organ, organism, population, multispecies, community, and ecosystem. The field of ecology developed because even the most meticulous study of single species could not accurately predict how several such species might interact competitively or in predator-prey interactions and the like. Moreover, interactions of biotic and abiotic materials at the level of organization called ecosystem are so complex that they could not be predicted from a detailed examination of isolated component parts. This preamble may seem platitudinous to most biologists who have heard this many times before. This makes it all the more remarkable that in the field of toxicity testing an assumption is made that responses at levels of biological organization above single species can be reliably predicted with single species toxicity tests. Unfortunately, this assumption is rarely explicitly stated and, therefore, often passes unchallenged. When the assumption is challenged, a response is that single species tests have been used for years and no adverse ecosystem or multispecies effects were noted. This could be because single species tests are overly protective when coupled with an enormous application factor or that such effects were simply not detected because there were no systematic, scientifically sound studies carried out to detect them. Probably both of these possibilities occur. However, the important factor is that no scientifically justifiable evidence exists to indicate that degree of reliability with which one may use single species tests to predict responses at higher levels of biological organization. One might speculate that the absence of such information is due to the paucity of reliable tests at higher levels of organization. This situation certainly exists but does not explain the lack of pressure to develop such tests. The most pressing need in the field of toxicity testing is not further perfection of single species tests, but rather the development of parallel tests at higher levels of organization. These need not be inordinately expensive, time consuming, or require any more skilled professionals than single species tests. Higher level tests merely require a different type of biological background. Theoretical ecologists have been notoriously reluctant to contribute to this effort, and, as a consequence, such tests must be developed by associations of professional biologists and other organizations with similar interests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号