首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用国家蔬菜种质资源库的1904份辣椒资源材料,采用测序技术获得eIF4E(eukaryotic translation initiation 4E)基因exon1序列,研究e IF4E基因多样性及我国辣椒种质资源群体多样性。结果表明:在1904份材料中共发现17个单倍型,14个有义多态性位点,其中9个为新的位点,位点大多集中在eIF4E蛋白表面环上;8个地理群体的平均单倍型多样性(Hd)和平均核苷酸多样性(Pi)分别为0.519和0.00210;群体间分化指数(Fst值)及基因流(Nm)表明不同群体间表现差异的分化程度;AMOVA分析表明总变异主要来源于群体内个体间的变异(97.23%),只有2.77%变异发生在群体间。本研究将有助于了解我国辣椒eIF4E基因多样性,为抗PVY育种提供更多抗源材料。  相似文献   

2.
The emerging roles of translation factor eIF4E in the nucleus   总被引:10,自引:0,他引:10  
The emerging field of nuclear eIF research has yielded many surprises and led to the dissolution of some dogmatic/ideological viewpoints of the place of translation in the regulation of gene expression. Eukaryotic initiation factors (eIFs) are classically defined by their cytoplasmic location and ability to regulate the initiation phase of protein synthesis. For instance, in the cytoplasm, the m7G cap-binding protein eIF4E plays a distinct role in cap-dependent translation initiation. Disruption of eIF4E's regulatory function drastically effects cell growth and may lead to oncogenic transformation. A growing number of studies indicate that many eIFs, including a substantial fraction of eIF4E, are found in the nucleus. Indeed, nuclear eIF4E participates in a variety of important RNA-processing events including the nucleocytoplasmic transport of specific, growth regulatory mRNAs. Although unexpected, it is possible that some eIFs regulate protein synthesis within the nucleus. This review will focus on the novel, nuclear functions of eIF4E and how they contribute to eIF4E's growth-activating and oncogenic properties. Both the cytoplasmic and nuclear functions of eIF4E appear to be dependent on its intrinsic ability to bind to the 5' m7G cap of mRNA. For example, Promyelocytic Leukemia Protein (PML) potentially acts as a negative regulator of nuclear eIF4E function by decreasing eIF4E's affinity for the m7G cap. Therefore, eIF4E protein is flexible enough to utilize a common biochemical activity, such as m7G cap binding, to participate in divergent processes in different cellular compartments.  相似文献   

3.
4.
To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinai mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum ‘Dempsey’ containing an eIF4E mutation (pvr1 2 ) and C. annuum ‘Perennial’ containing an eIFiso4E mutation (pvr6). C. annuum ‘Dempsey’ was susceptible and C. annuum ‘Perennial’ was resistant to ChiVMV. All F1 plants showed resistance, and F2 individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five F2 and 329 F3 plants of 17 families were genotyped with pvr1 2 and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both pvr1 2 and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in eIF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of F2 plants revealed that all plants containing homozygous genotypes of both pvr1 2 and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of eIF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper. These authors contributed equally to this work.  相似文献   

5.
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING‐induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh–eIF4E1PI24–pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re‐establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss‐of‐function alleles to generate resistance may be counter‐productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.  相似文献   

6.
Eukaryotic initiation factor eIF4E plays a pivotal role in translation initiation. As a component of the ternary eIF4F complex, eIF4E interacts with the mRNA cap structure to facilitate recruitment of the 40S ribosomal subunit onto mRNA. Plants contain two distinct cap-binding proteins, eIF4E and eIFiso4E, that assemble into different eIF4F complexes. To study the functional roles of eIF4E and eIFiso4E in tobacco, we isolated two corresponding cDNAs, NteIF4E1 and NteIFiso4E1, and used these to deplete cap-binding protein levels in planta by antisense downregulation. Antibodies raised against recombinant NteIF4E1 detected three distinct cap-binding proteins in tobacco leaf extracts; NteIF4E and two isoforms of NteIFiso4E. The three cap-binding proteins were immuno-detected in all tissues analysed and were coordinately regulated, with peak expression in anthers and pollen. Transgenic tobacco plants showing significant depletion of either NteIF4E or the two NteIFiso4E isoforms displayed normal vegetative development and were fully fertile. Interestingly, NteIFiso4E depletion resulted in a compensatory increase in NteIF4E levels, whereas the down-regulation of NteIF4E did not trigger a reciprocal increase in NteIFiso4E levels. The antisense depletion of both NteIF4E and NteIFiso4E resulted in plants with a semi-dwarf phenotype and an overall reduction in polyribosome loading, demonstrating that both eIF4E and eIFiso4E support translation initiation in planta, which suggests their potential role in the regulation of plant growth.  相似文献   

7.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

8.
From the characterization of the recessive resistance gene, sbm1, in pea we have identified the eukaryotic translation initiation factor, eIF4E, as a susceptibility factor required for infection with the Potyvirus, Pea seed-borne mosaic virus. A functional analysis of the mode of action of the product of the dominant allele revealed a novel function for eIF4E in its support for virus movement from cell-to-cell, in addition to its probable support for viral RNA translation, and hence replication. Different resistance specificities in two independent pea lines were explained by different mutations in eIF4E. On the modelled structure of eIF4E the coding changes were in both cases lying in and around the structural pocket involved in binding the 5'-m7G cap of eukaryotic mRNAs. Protein expression and cap-binding analysis showed that eIF4E encoded by a resistant plant could not bind to m7G-Sepharose, a result which may point to functional redundancy between eIF4E and the paralogous eIF(iso)4E in resistant peas. These observations, together with related findings for other potyvirus recessive resistances, provide a more complete picture of the potyvirus life cycle.  相似文献   

9.
摘要 目的:探讨热休克蛋白70(HSP70)、真核细胞翻译起始因子4E(eIF4E)、DNA甲基转移酶1(DNMT1)在宫颈癌中的表达及意义。方法:选择2015年2月至2017年2月我院接诊的40例女性宫颈癌患者为本研究对象,收集所有患者手术切除病理组织制作石蜡切片,并选择我院同期接受其他手术的35例标本作为对照组,使用SP免疫组织化学法观察乳腺癌组织中HSP70、eIF4E、DNMT1染色结果,并分析其和临床病理因素之间的关系。结果:在免疫组化学法结果中显示,40例宫颈癌组织中,HSP70阳性表达率为65.00%(26/40),eIF4E阳性表达率为67.50%(27/40),DNMT1阳性表达率为72.50%(29/40),均显著高于对照组(P<0.05);在宫颈癌组织中,HSP70、eIF4E、DNMT1和分化程度、临床分期及淋巴转移均有密切关系,(P<0.05);将分化程度、临床分期、淋巴转移、HSP70、eIF4E、DNMT1进行相关分析,结果显示,HSP70、eIF4E、DNMT1和分化程度、临床分期及淋巴转移之间均呈正相关(P<0.05),且HSP70和eIF4E、DNMT1均呈正相关(P<0.05),eIF4E和DNMT1呈正相关(P<0.05)。结论:在宫颈癌组织中HSP70、eIF4E、DNMT1的高表达和临床病理之间存在着密切关系。  相似文献   

10.
The interaction between turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) and Arabidopsis thaliana eukaryotic initiation factor (iso)4E (eIF(iso)4E) was investigated to address the influence of potyviral VPg on host cellular translational initiation. Affinity chromatographic analysis showed that the region comprising amino acids 62-70 of VPg is important for the interaction with eIF(iso)4E. In vitro translation analysis showed that the addition of VPg significantly inhibited translation of capped RNA in eIF(iso)4E-reconstituted wheat germ extract. This result indicates that VPg inhibits cap-dependent translational initiation via binding to eIF(iso)4E. The inhibition by VPg of in vitro translation of RNA with wheat germ extract did not depend on RNase activity. Our present results may indicate that excess VPg produced at the encapsidation stage shuts off cap-dependent translational initiation in host cells by inhibiting complex formation between eIF(iso)4E and cellular mRNAs.  相似文献   

11.
Translation initiation factors are universal determinants of plant susceptibility to RNA viruses, but the underlying mechanisms are poorly understood. Here, we show that a sequence in the 3' untranslated region (3'-UTR) of a viral genome that is responsible for overcoming plant eIF4E-mediated resistance (virulence determinant) functions as a 3' cap-independent translational enhancer (3'-CITE). The virus/plant pair studied here is Melon necrotic spot virus (MNSV) and melon, for which a recessive resistance controlled by melon eIF4E was previously described. Chimeric viruses between virulent and avirulent isolates enabled us to map the virulence and avirulence determinants to 49 and 26 nucleotides, respectively. The translational efficiency of a luc reporter gene flanked by 5'- and 3'-UTRs from virulent, avirulent and chimeric viruses was analysed in vitro, in wheatgerm extract, and in vivo, in melon protoplasts, showing that: (i) the virulence determinant mediates the efficient cap-independent translation in vitro and in vivo; (ii) the avirulence determinant was able to promote efficient cap-independent translation in vitro, but only when eIF4E from susceptible melon was added in trans, and, coherently, only in protoplasts of susceptible melon, but not in the protoplasts of resistant melon; (iii) these activities required the 5'-UTR of MNSV in cis. Thus, the virulence and avirulence determinants function as 3'-CITEs. The activity of these 3'-CITEs was host specific, suggesting that an inefficient interaction between the viral 3'-CITE of the avirulent isolate and eIF4E of resistant melon impedes the correct formation of the translation initiation complex at the viral RNA ends, thereby leading to resistance.  相似文献   

12.
13.
All eukaryotic cellular mRNAs contain a 5' m(7)GpppN cap. In addition to conferring stability to the mRNA, the cap is required for pre-mRNA splicing, nuclear export and translation by providing an anchor point for protein binding. In translation, the interaction between the cap and the eukaryotic initiation factor 4E (eIF4E) is important in the recruitment of the mRNAs to the ribosome. Human 4EHP (h4EHP) is a homologue of eIF4E. Like eIF4E it is able to bind the cap but it appears to play a different cellular role, possibly being involved in the fine-tuning of protein expression levels. Here we use X-ray crystallography and isothermal titration calorimetry (ITC) to investigate further the binding of cap analogues and peptides to h4EHP. m(7)GTP binds to 4EHP 200-fold more weakly than it does to eIF4E with the guanine base sandwiched by a tyrosine and a tryptophan instead of two tryptophan residues as seen in eIF4E. The tyrosine resides on a loop that is longer in h4EHP than in eIF4E. The consequent conformational difference between the proteins allows the tyrosine to mimic the six-membered ring of the tryptophan in eIF4E and adopt an orientation that is similar to that seen for equivalent residues in other non-homologous cap-binding proteins. In the absence of ligand the binding site is incompletely formed with one of the aromatic residues being disordered and the side-chain of the other adopting a novel conformation. A peptide derived from the eIF4E inhibitory protein, 4E-BP1 binds h4EHP 100-fold less strongly than eIF4E but in a similar manner. Overall the data, combined with sequence analyses of 4EHP from evolutionary diverse species, strongly support the hypothesis that 4EHP plays a physiological role utilizing both cap-binding and protein-binding functions but which is distinct from eIF4E.  相似文献   

14.
Mutations in the eukaryotic translation initiation factors eIF4E and eIF(iso)4E confer potyvirus resistance in a range of plant hosts. This supports the notion that, in addition to their role in translation of cellular mRNAs, eIF4E isoforms are also essential for the potyvirus cycle. CERES is a plant eIF4E- and eIF(iso)4E-binding protein that, through its binding to the eIF4Es, modulates translation initiation; however, its possible role in potyvirus resistance is unknown. In this article, we analyse if the ectopic expression of AtCERES is able to interfere with turnip mosaic virus replication in plants. Our results demonstrate that, during infection, the ectopic expression of CERES in Nicotiana benthamiana promotes the development of a mosaic phenotype when it is accumulated to moderate levels, but induces veinal necrosis when it is accumulated to higher levels. This necrotic process resembles a hypersensitive response (HR)-like response that occurs with different HR hallmarks. Remarkably, Arabidopsis plants inoculated with a virus clone that promotes high expression of CERES do not show signs of infection. These final phenotypical outcomes are independent of the capacity of CERES to bind to eIF4E. All these data suggest that CERES, most likely due to its leucine-rich repeat nature, could act as a resistance protein, able to promote a range of different defence responses when it is highly overexpressed from viral constructs.  相似文献   

15.
16.
Nicotiana benthamiana has been described as non-host for Melon necrotic spot virus (MNSV). We investigated the basis of this resistance using the unique opportunity provided by strain MNSV-264, a recombinant virus that is able to overcome the resistance. Analysis of chimeric MNSV mutants showed that virulence in N. benthamiana is conferred by a 49 nucleotide section of the MNSV-264 3'-UTR, which acts in this host as a cap-independent translational enhancer (3'-CITE). Although the 3'-CITE of non-adapted MNSV-Mα5 is active in susceptible melon, it does not promote efficient translation in N. benthamiana, thus preventing expression of proteins required for virus replication. However, MNSV-Mα5 gains the ability to multiply in N. benthamiana cells if eIF4E from a susceptible melon variety (Cm-eIF4E-S) is supplied in trans. These data show that N. benthamiana resistance to MNSV-Mα5 results from incompatibility between the MNSV-Mα5 3'-CITE and N. benthamiana eIF4E in initiating efficient translation of the viral genome. Therefore, non-host resistance conferred by the inability of a host susceptibility factor to support viral multiplication may be a possible mechanism for this type of resistance to viruses.  相似文献   

17.
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.  相似文献   

18.
To investigate the binding preference of eIF4E for the three eIF4E-binding isoforms (4E-BP1-3) and the function of N-terminal flexible region of eIF4E for their interactions, the binding parameters of recombinant full-length and N-terminal residues-deleted eIF4Es with 4E-BP1-3 were investigated by the surface plasmon resonance (SPR) analysis. Consequently, it was clarified that 4E-BP2 exhibits the highest binding affinity for both m7GTP-bound and -unbound full-length eIF4Es when compared with 4E-BP1 and 4E-BP3. This is primarily due to the difference among their dissociation rates, because their association rates are almost the same. Interestingly, the deletion of the 33 N-terminal residues of eIF4E increased its binding affinities for 4E-BP1 and 4E-BP2 markedly, whereas such a change was not observed by at least the N-terminal deletion up to 26 residues. In contrast, the binding parameters of 4E-BP3 were hardly influenced by N-terminal deletion up to 33 residues. From the comparison of the amino acid sequences of 4E-BP1-3, the present result indicates the importance of N-terminal flexible region of eIF4E for the suppressive binding with 4E-BP1 and 2, together with the possible contribution of N-terminal sequence of 4E-BP isoform to the regulative binding to eIF4E.  相似文献   

19.
Initiation is the rate-limiting step during mRNA 5′ cap-dependent translation, and thus a target of a strict control in the eukaryotic cell. It is shown here by analytical ultracentrifugation and fluorescence spectroscopy that the affinity of the human translation inhibitor, eIF4E-binding protein (4E-BP1), to the translation initiation factor 4E is significantly higher when eIF4E is bound to the cap. The 4E-BP1 binding stabilizes the active eIF4E conformation and, on the other hand, can facilitate dissociation of eIF4E from the cap. These findings reveal the particular allosteric effects forming a thermodynamic cycle for the cooperative regulation of the translation initiation inhibition.  相似文献   

20.
We have investigated the effects of poly(A)-tail on binding of eIF4F, eIF4B and PABP with tobacco etch virus (TEV) IRES RNA. The fluorescence anisotropy data showed that the addition of poly(A)20 increases the binding affinity of eIF4F·4B and eIF4F·PABP complexes to IRES RNA ~ 2- and 4-fold, respectively. However, the binding affinity of eIF4F with PK1 was enhanced ~ 11-fold with the addition of PABP, eIF4B, and poly(A)20 together. Whereas, poly(A)20 alone increases the binding affinity of eIF4F·4B·PABP with PK1 RNA about 3-fold, showing an additive effect rather than the large increase in affinity as shown for cap binding. Thermodynamic data showed that PK1 RNA binding to protein complexes in the presence of poly(A)20 was enthalpy-driven and entropy-favorable. Poly(A)20 decreased the entropic contribution 75% for binding of PK1 RNA to eIF4F·4B·PABP as compared to eIF4F alone, suggesting reduced hydrophobic interactions for complex formation and an overall conformational change. Overall, these results demonstrate the first direct effect of poly(A) on the equilibrium and thermodynamics of eIF4F and eIF4F·4B·PABP with IRES-RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号