首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential.  相似文献   

2.
In this paper, we present a general selection-mutation model of evolution on a one-dimensional continuous fitness space. The formulation of our model includes both the classical diffusion approach to mutation process as well as an alternative approach based on an integral operator with a mutation kernel. We show that both approaches produce fundamentally equivalent results. To illustrate the suitability of our model, we focus its analytical study into its application to recent experimental studies of in vitro viral evolution. More specifically, these experiments were designed to test previous theoretical predictions regarding the effects of multiple infection dynamics (i.e., coinfection and superinfection) on the virulence of evolving viral populations. The results of these experiments, however, did not match with previous theory. By contrast, the model we present here helps to understand the underlying viral dynamics on these experiments and makes new testable predictions about the role of parameters such the time between successive infections and the growth rates of resident and invading populations.  相似文献   

3.
This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.  相似文献   

4.
Infectious diseases may place strong selection on the social organization of animals. Conversely, the structure of social systems can influence the evolutionary trajectories of pathogens. While much attention has focused on the evolution of host sociality or pathogen virulence separately, few studies have looked at their coevolution. Here we use an agent-based simulation to explore host-pathogen coevolution in social contact networks. Our results indicate that under certain conditions, both host sociality and pathogen virulence exhibit continuous cycling. The way pathogens move through the network (e.g., their interhost transmission and probability of superinfection) and the structure of the network can influence the existence and form of cycling.  相似文献   

5.
The interplay between space and evolution is an important issue in population dynamics, that is particularly crucial in the emergence of polymorphism and spatial patterns. Recently, biological studies suggest that invasion and evolution are closely related. Here, we model the interplay between space and evolution starting with an individual-based approach and show the important role of parameter scalings on clustering and invasion. We consider a stochastic discrete model with birth, death, competition, mutation and spatial diffusion, where all the parameters may depend both on the position and on the phenotypic trait of individuals. The spatial motion is driven by a reflected diffusion in a bounded domain. The interaction is modelled as a trait competition between individuals within a given spatial interaction range. First, we give an algorithmic construction of the process. Next, we obtain large population approximations, as weak solutions of nonlinear reaction–diffusion equations. As the spatial interaction range is fixed, the nonlinearity is nonlocal. Then, we make the interaction range decrease to zero and prove the convergence to spatially localized nonlinear reaction–diffusion equations. Finally, a discussion of three concrete examples is proposed, based on simulations of the microscopic individual-based model. These examples illustrate the strong effects of the spatial interaction range on the emergence of spatial and phenotypic diversity (clustering and polymorphism) and on the interplay between invasion and evolution. The simulations focus on the qualitative differences between local and nonlocal interactions.   相似文献   

6.
We analyze the evolutionary consequences of host resistance (the ability to decrease the probability of being infected by parasites) for the evolution of parasite virulence (the deleterious effect of a parasite on its host). When only single infections occur, host resistance does not affect the evolution of parasite virulence. However, when superinfections occur, resistance tends to decrease the evolutionarily stable (ES) level of parasite virulence. We first study a simple model in which the host does not coevolve with the parasite (i.e., the frequency of resistant hosts is independent of the parasite). We show that a higher proportion of resistant host decreases the ES level of parasite virulence. Higher levels of the efficiency of host resistance, however, do not always decrease the ES parasite virulence. The implications of these results for virulence management (evolutionary consequences of public health policies) are discussed. Second, we analyze the case where host resistance is allowed to coevolve with parasite virulence using the classical gene-for-gene (GFG) model of host-parasite interaction. It is shown that GFG coevolution leads to lower parasite virulence (in comparison with a fully susceptible host population). The model clarifies and relates the different components of the cost of parasitism: infectivity (ability to infect the host) and virulence (deleterious effect) in an evolutionary perspective.  相似文献   

7.
We analyze the evolution of specialization in resource utilization in a discrete-time metapopulation model using the adaptive dynamics approach. The local dynamics in the metapopulation are based on the Beverton-Holt model with mechanistic underpinnings. The consumer faces a trade-off in the abilities to consume two resources that are spatially heterogeneously distributed to patches that are prone to local catastrophes. We explore the factors favoring the spread of generalist or specialist strategies. Increasing fecundity or decreasing catastrophe probability favors the spread of the generalist strategy and increasing environmental heterogeneity enlarges the parameter domain where the evolutionary branching is possible. When there are no catastrophes, increasing emigration diminishes the parameter domain where the evolutionary branching may occur. Otherwise, the effect of emigration on evolutionary dynamics is non-monotonous: both small and large values of emigration probability favor the spread of the specialist strategies whereas the parameter domain where evolutionary branching may occur is largest when the emigration probability has intermediate values. We compare how different forms of spatial heterogeneity and different models of local growth affect the evolutionary dynamics. We show that even small changes in the resource dynamics may have outstanding evolutionary effects to the consumers.  相似文献   

8.
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca . Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca , selects for higher castration virulence in Allomerus , because seeds from Azteca -inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.  相似文献   

9.
10.
The potential of harvesting to induce adaptive changes in exploited populations is now increasingly recognized. While early studies predicted that elevated mortalities among larger individuals select for reduced maturation size, recent theoretical studies have shown conditions under which other, more complex evolutionary responses to size-selective mortality are expected. These new predictions are based on the assumption that, owing to the trade-off between growth and reproduction, early maturation implies reduced growth. Here we extend these findings by analyzing a model of a harvested size-structured population in continuous time, and by systematically exploring maturation evolution under all three traditionally acknowledged costs of early maturation: reduced fecundity, reduced growth, and/or increased natural mortality. We further extend this analysis to the two main types of harvest selectivity, with an individual's chance of getting harvested depending on its size and/or maturity stage. Surprisingly, we find that harvesting mature individuals not only favors late maturation when the costs of early maturation are low, but promotes early maturation when the costs of early maturation are high. To our knowledge, this study therefore is the first to show that harvesting mature individuals can induce early maturation.  相似文献   

11.
Parasite transmission modes and the evolution of virulence   总被引:5,自引:0,他引:5  
A mathematical model is presented that explores the relationship between transmission patterns and the evolution of virulence for horizontally transmitted parasites when only a single parasite strain can infect each host. The model is constructed by decomposing parasite transmission into two processes, the rate of contact between hosts and the probability of transmission per contact. These transmission rate components, as well as the total parasite mortality rate, are allowed to vary over the course of an infection. A general evolutionarily stable condition is presented that partitions the effects of virulence on parasite fitness into three components: fecundity benefits, mortality costs, and morbidity costs. This extension of previous theory allows us to explore the evolutionary consequences of a variety of transmission patterns. I then focus attention on a special case in which the parasite density remains approximately constant during an infection, and I demonstrate two important ways in which transmission modes can affect virulence evolution: by imposing different morbidity costs on the parasite and by altering the scheduling of parasite reproduction during an infection. Both are illustrated with examples, including one that examines the hypothesis that vector-borne parasites should be more virulent than non-vector-borne parasites (Ewald 1994). The validity of this hypothesis depends upon the way in which these two effects interact, and it need not hold in general.  相似文献   

12.
When studying how much a parasite harms its host, evolutionary biologists turn to the evolutionary theory of virulence. That theory has been successful in predicting how parasite virulence evolves in response to changes in epidemiological conditions of parasite transmission or to perturbations induced by drug treatments. The evolutionary theory of virulence is, however, nearly silent about the expected differences in virulence between different species of parasite. Why, for example, is anthrax so virulent, whereas closely related bacterial species cause little harm? The evolutionary theory might address such comparisons by analysing differences in tradeoffs between parasite fitness components: transmission as a measure of parasite fecundity, clearance as a measure of parasite lifespan and virulence as another measure that delimits parasite survival within a host. However, even crude quantitative estimates of such tradeoffs remain beyond reach in all but the most controlled of experimental conditions. Here, we argue that the great recent advances in the molecular study of pathogenesis provide a way forward. In light of those mechanistic studies, we analyse the relative sensitivity of tradeoffs between components of parasite fitness. We argue that pathogenic mechanisms that manipulate host immunity or escape from host defences have particularly high sensitivity to parasite fitness and thus dominate as causes of parasite virulence. The high sensitivity of immunomodulation and immune escape arise because those mechanisms affect parasite survival within the host, the most sensitive of fitness components. In our view, relating the sensitivity of pathogenic mechanisms to fitness components will provide a way to build a much richer and more general theory of parasite virulence.  相似文献   

13.
Mosquito mortality and the evolution of malaria virulence   总被引:1,自引:0,他引:1  
Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.  相似文献   

14.
The evolution of parasite virulence is thought to involve a trade‐off between parasite reproductive rate and the effect of increasing the number of propagules on host survivorship. Such a trade‐off should lead to selection for an intermediate level of within‐host reproduction (λ). Here I consider the effects of parasite propagule number on selection affecting λ when (i) the effect of each propagule is independent of propagule number, and (ii) when the effect of each propagule changes as a function of propagule number. Virulence evolves in these models as a correlated response to selection on λ. If each propagule has the same effect (s) as all previous propagules, the survivorship of infected hosts is reduced by more than 60% at equilibrium, independent of the value of s. If, instead, each propagule has a more negative effect on host survivorship than previous propagules, host survivorship at equilibrium is expected to increase as the effect becomes more pronounced. These results are directly parallel to results derived for population mean fitness at mutation‐selection balance; and they suggest that high virulence should be associated with parasites for which the effect of adding propagules either remains constant or diminishes with propagule number.  相似文献   

15.
Human disease and the evolution of pathogen virulence   总被引:1,自引:0,他引:1  
Theorists who make a priori generalizations about the tendency of host-parasite systems to co-evolve toward commensalism or increased parasitism err because they do not consider the empirical relation between host pathology and pathogen transmission. Natural selection should favor increased pathogen virulence in diseases where host pathology contributes to pathogen transmission and favor decreased virulence when pathology impedes transmission. This paper classifies important human diseases according to the contribution human pathology makes to pathogen transmission.  相似文献   

16.
Culture pervades human life and is at the origin of the success of our species. A wide range of other animals have culture too, but often in a limited form that does not complexify through the gradual accumulation of innovations. We developed a new paradigm to study cultural evolution in primates in order to better evaluate our closest relatives'' cultural capacities. Previous studies using transmission chain experimental paradigms, in which the behavioural output of one individual becomes the target behaviour for the next individual in the chain, show that cultural transmission can lead to the progressive emergence of systematically structured behaviours in humans. Inspired by this work, we combined a pattern reproduction task on touch screens with an iterated learning procedure to develop transmission chains of baboons (Papio papio). Using this procedure, we show that baboons can exhibit three fundamental aspects of human cultural evolution: a progressive increase in performance, the emergence of systematic structure and the presence of lineage specificity. Our results shed new light on human uniqueness: we share with our closest relatives essential capacities to produce human-like cultural evolution.  相似文献   

17.
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing‐over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well‐described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers—spanning double‐strand break formation, strand invasion, the crossover/non‐crossover decision, and resolution—to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non‐crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non‐crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome‐wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.  相似文献   

18.
We investigate symmetry-breaking bifurcation patterns in evolution in the framework of adaptive dynamics (AD). We define weak and strong symmetry. The former applies for populations where only the simultaneous reflection of all individuals is an invariant transformation. The symmetry is strong in populations where reflection of some, but not all, individuals leaves the situation unchanged. We show that in case of weak symmetry evolutionary branching can lead to the emergence of two asymmetric variants, which are mirror images of each other, and the loss of the symmetric ancestor. We also show that in case of strong symmetry, evolutionary branching can occur into a symmetric and an asymmetric variant, both of which survive. The latter, asymmetric branching differs from the generic branching patterns of AD, which is always symmetric. We discuss biological examples for weak and strong symmetries and a specific model producing the new kind of branching.  相似文献   

19.
Tolerance to parasites reduces the harm that infection causes the host (virulence). Here we investigate the evolution of parasites in response to host tolerance. We show that parasites may evolve either higher or lower within-host growth rates depending on the nature of the tolerance mechanism. If tolerance reduces virulence by a constant factor, the parasite is always selected to increase its growth rate. Alternatively, if tolerance reduces virulence in a nonlinear manner such that it is less effective at reducing the damage caused by higher growth rates, this may select for faster or slower replicating parasites. If the host is able to completely tolerate pathogen damage up to a certain replication rate, this may result in apparent commensalism, whereby infection causes no apparent virulence but the original evolution of tolerance has been costly. Tolerance tends to increase disease prevalence and may therefore lead to more, rather than less, disease-induced mortality. If the parasite is selected, even a highly efficient tolerance mechanism may result in more individuals in total dying from disease. However, the evolution of tolerance often, although not always, reduces the individual risk of dying from infection.  相似文献   

20.
If the transmission occurs through local contact of the individuals in a spatially structured population, the evolutionarily stable (ESS) traits of parasite might be quite different from what the classical theory with complete mixing predicts. In this paper, we theoretically study the ESS virulence and transmission rate of a parasite in a lattice-structured host population, in which the host can send progeny only to its neighboring vacant site, and the transmission occurs only in between the infected and the susceptible in the nearest-neighbor sites. Infected host is assumed to be infertile. The analysis based on the pair approximation and the Monte Carlo simulation reveal that the ESS transmission rate and virulence in a lattice-structured population are greatly reduced from those in completely mixing population. Unlike completely mixing populations, the spread of parasite can drive the host to extinction, because the local density of the susceptible next to the infected can remain high even when the global density of host becomes very low. This demographic viscosity and group selection between self-organized spatial clusters of host individuals then leads to an intermediate ESS transmission rate even if there is no tradeoff between transmission rate and virulence. The ESS transmission rate is below the region of parasite-driven extinction by a finite amount for moderately large reproductive rate of host; whereas, the evolution of transmission rate leads to the fade out of parasite for small reproductive rate, and the extinction of host for very large reproductive rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号