首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The polymorphism of glucose dehydrogenase (GDH) is demonstrated by isoelectric focusing of leucocyte extracts followed by enzyme staining. Segregation in 52 families with 145 children is consistent with the formal hypothesis of three common alleles, GDH* 1, GDH*2 and GDH*3, at an autosomal locus GDH. Allele frequencies from 104 unrelated individuals from southwestern Germany were calculated as GDH* 1 = 0.70, GDH*2 = 0.18 and GDH*3=0.12.  相似文献   

2.
Placental glucose dehydrogenase polymorphism in Japanese   总被引:1,自引:0,他引:1  
A Kido  N Komatsu  Y Kimura  M Oya 《Human heredity》1989,39(2):116-117
The polymorphism of glucose dehydrogenase (GDH) was investigated in 516 Japanese placentae. The allele frequencies were GDH*1 = 0.510, GDH*2 = 0.488 and GDH*3 = 0.002. GDH*3 appears to increase from Japan via Southeast Asia and India to Europe.  相似文献   

3.
Different tissues, especially muscles, from insects belonging to various groups were extracted and studied for their lactic dehydrogenase (LDH) and α-glycerophosphate dehydrogenase (GDH I) activities from the comparative point of view. In all cases assays of flight muscle extracts showed extremely low values of LDH activity whereas the GDH activities were surprisingly high. The activities in leg muscles were generally lower. In some insects, however, a very active LDH was found; in these cases the GDH activity seemed to be decreased. GDH I was rather active in the fat bodies. The presence of particulate glycerophosphate dehydrogenase (GDH II) was also demonstrated in insect muscles. These results were interpreted as indicating a system by which there is accomplished immediate and direct breakdown of metabolites to supply large amounts of energy during flight and other activities without the accumulation of intermediate substances.  相似文献   

4.
Pisum seedling and Pastinaca storage roots contained high glutanrate dehydrogenase (GDH) activity in areas of reported rapid growth and high phytoctrome content. A similar distribution was observed for malate dehydrogenase. Freeze-thawings of mitochondrial preparations from Pisum roots always resulted in increases of GDH specific activity; however, the observed increases were much larger with basal than apical sections. Both intact and freeze-thawed mitochondrial preparations from seedling roots exhibited increases in GDH activity with time after isolation. In intact mitochondrial preparations from roots of etiolated seedlings, an increase in malate dehydrogenase activity was observed similar to that of GDH activity; however, no increased malate dehydrogenase activity was noted in preparations from light-grown seedlings. Illuminating Pisum seedlings with far-red light slowly increased GDH activity in roots over a period of two weeks. Since these observed increases were not due to direct exposure of roots to light, other factors were likely involved.  相似文献   

5.
The subcellular localization of NAD+-dependent glutamate dehydrogenase (GDH; EC 1.4.1.4) in leaves of barley ( Hordeum vulgare L. cv. Hassan) was studied during leaf senescence induced by detachment and incubation in the dark. GDH strongly increased in the cytoplasmic fraction isolated by differential centrifugation during senescence. It also showed a retarded and low increase in the mitochondrial fraction. No GDH was detected in the chloroplast fraction. The marker of the cytoplasmic fraction glucose-6-phosphate dehydrogenase (G-6-P dehydrogenase; EC 1.1.1.49) rapidly decreased after the induction of senescence. The effects of kinetin, gibberellic acid, abscisic acid and ethylene on the levels of GDH and G-6-P dehydrogenase were, in general, in agreement with the known hormonal effects on other senescence symptoms.  相似文献   

6.
Summary Glutamate dehydrogenase (GDH) is largely particulate in soybean, and its specific activity is much higher in roots than in leaflets. The specific activity of GDH in soybean callus is considerably lowered by glycine and leucine and is markedly increased by glutamate, tyrosine, phenylalanine, and especially serine. Increasing concentrations of indoleacetic acid increase the specific activity of GDH in callus far more than they increase either fresh weight or specific activity of malate dehydrogenase. Increasing kinetin also causes an increase in the specific activity of GDH, but mainly at low indoleacetic acid concentrations.  相似文献   

7.
Glutamate dehydrogenase (GDH) activity in leukocytes and platelets in spinocerebellar degenerations (SCD) was determined. In the same subject, GDH activity was higher and more reproducible in platelets than in leukocytes. GDH was decreased significantly in olivopontocerebellar atrophy (OPCA) (Ca. 30% decrease). Pyruvate dehydrogenase (PDH) in platelets showed non specific decreased activity in SCD and amyotropic lateral sclerosis. Energy metabolism in cerebellum may be diminished in some types of ataxia, and glutaminergic neurons may be more affected in OPCA than in other SCD.  相似文献   

8.
Streptomyces fradiae has two chromatographically distinct forms of glutamate dehydrogenase (GDH): one GDH utilizes NAD as coenzyme, the other uses NADP. The intracellular level of both GDHs is strongly regulated by the nitrogen source in the growth medium. NADP-dependent GDH was purified to homogeneity from crude extracts of S. fradiae. The Mr of the native enzyme was determined to be 200,000 by size-exclusion high-performance liquid chromatography whereas after sodium dodecyl sulphate-polyacrylamide gel electrophoresis one major band of Mr 49,000 was found, suggesting that the enzyme is a tetramer. The enzyme was highly specific for the substrates 2-oxoglutarate and L-glutamate, and required NADP, which could not be replaced by NAD, as a cofactor. The pH optimum was 9.2 for oxidative deamination of glutamate and 8.4 for reductive amination of 2-oxoglutarate. The Michaelis constants (Km) were 28.6 mM for L-glutamate and 0.12 mM for NADP. Km values for reductive amination were 1.54 mM for 2-oxoglutarate, 0.07 mM for NADPH and 30.8 mM for NH+4. The enzyme activity was significantly reduced by adenine nucleotides, particularly ATP.  相似文献   

9.
Protein chemical studies of glutamate dehydrogenase isoproteins (GDH I and GDH II) from bovine brain reveal that one cystein residue is accessible for reaction with thiol-modifying reagent. Reaction of the two types of GDH isoproteins with p-chloromercuribenzoic acid resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo first-order kinetics with the second-order rate constant of 83 M(-1) s(-1) and 75 M(-1) s(-1) for GDH I and GDH II, respectively. The inactivation was partially prevented by preincubation of the glutamate dehydrogenase isoproteins with NADH. A combination of 10 mM 2-oxoglutarate with 2 mM NADH gave complete protection against the inactivation. There were no significant differences between the two glutamate dehydrogenase isoproteins in their sensitivities to inactivation by p-chloromercuribenzoic indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Allosteric effectors such as ADP and GTP had no effects on the inactivation of glutamate dehydrogenase isoproteins by thiol-modifying reagents. By a combination of peptide mapping analysis and labeling with [14C] p-chloromercuribenzoic acid, a reactive cystein residue was identified as Cys323 in the overall sequence. The cysteine residue was clearly identical to sequences of other GDH species known.  相似文献   

10.
1. An NADP-specific glutamate dehydrogenase (E.C. 1.4.1.4) of mitochondrial origin has been detected in M. senile, a sea anemone. 2. Substrate specificity and starch gel electrophoresis experiments indicated an absence of the NAD(P) glutamate dehydrogenase (E.C. 1.4.1.3). 3. This NADP specific GDH activity appears to be the sole GDH activity in species of the animal phylum Coelenterata.  相似文献   

11.
Glutamate dehydrogenase (GDH, EC 1.4.1.2) has long been used as a marker for mitochondria in brain and other tissues, despite reports indicating that GDH is also present in nuclei of liver and dorsal root ganglia. To examine whether GDH can be used as a marker to differentiate between mitochondria and nuclei in the brain, we have measured GDH by enzymatic activity and on immunoblots in rat brain mitochondria and nuclei which were highly enriched by density-gradient centrifugation methods. The activity of GDH was enriched in the nuclear fraction as well as in the mitochondrial faction, while the activities of other mitochondrial enzymes (fumarase, NAD-isocitrate dehydrogenase and pyruvate dehydrogenase complex) were enriched only in the mitochondrial fraction. Immunoblots using polyclonal antibodies against bovine liver GDH confirmed the presence of GDH in the rat brain nuclear and mitochondrial fractions. The GDH in these two subcellular fractions had a very similar molecular weight of 56,000 daltons. The mitochondrial and nuclear GDH differed, however, in their susceptibility to solubilization by detergents and salts. The mitochondrial GDH could be solubilized by extraction with low concentrations of detergents (0.1% Triton X-100 and 0.1% Lubrol PX), while the nuclear GDH could be solubizeded only by elevated concentrations of detergents (0.3% each) plus KCl (>150mM). Our results indicate that GDH is present in both nuclei and mitochondria in rat brain. The notion that GDH may serve as a marker for mitochondria needs to be re-evaluated.  相似文献   

12.
The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. (15)NH(4) labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized (15)N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while (15)N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt.  相似文献   

13.
Two Corynebacterium glutamicum strains, one being glutamate dehydrogenase (GDH) negative and the other possessing 11-fold-higher specific GDH activity than the parental wild type, were constructed and used to analyze the role of GDH in C. glutamicum. The results indicate (i) that GDH is dispensable for glutamate synthesis required for growth and (ii) that although a high level of GDH increases the intracellular glutamate pool, the level of GDH has no influence on glutamate secretion.  相似文献   

14.
The effects of eight germination temperatures from 10°C to 35°C on germination and dehydrogenase activities of two soybean (Glycine max [L.] Merr.) cultivars were investigated after 48 h of seedling growth. Axis fresh weights of cv. Chippewa increased as germination temperature increased from 10°C to 35°C. In contrast, axis fresh weights for the cv. Wells increased more slowly with increasing temperature and reached a maximum at c. 25°C. In general, in vitro activities of glutamate dehydrogenase (GDH), NADP-isocitrate dehydrogenase (NADP-ICDH), and malate dehydrogenase (MDH) from the axes of cv. Chippewa correlated well with increases in axis fresh weights. GDH and MDH activities from axes of the cv. Wells also reflected increases in axis fresh weights although the correlation was not as evident as for the cv. Chippewa. NADP-ICDH activity from ‘Wells’ axes was highest at 35°C even though germination was poor at this temperature. GDH and MDH activities from cotyledons of both cultivars were not correlated with axis weight increases. No GDH activity was detected in ‘Wells’ cotyledons from seeds germinated at 35°C.  相似文献   

15.
Rhizobium phaseoli lacks glutamate dehydrogenase (GDH) and assimilates ammonium by the glutamine synthetase-glutamate synthase pathway. A strain of R. phaseoli harboring the Escherichia coli GDH structural gene (gdhA) was constructed. GDH activity was expressed in R. phaseoli in the free-living state and in symbiosis. Nodules with bacteroids that expressed GDH activity had severe impairment of nitrogen fixation. Also, R. phaseoli cells that lost GDH activity and assimilated ammonium by the glutamine synthetase-glutamate synthase pathway preferentially nodulated Phaseolus vulgaris.  相似文献   

16.
Monospecific antisera against three glutamate dehydrogenase (GDH) subunits of lupin root nodules were obtained. The use of sensitive mixed rocket immunoelectrophoresis enabled detection of seven GDH forms at the early stage of nodule development, thus providing evidence for the earlier hypothesized (L. Ratajczak et al., 1986, Physiol. Plant., 67, 685-689) random association of subunits 2g and 2a to form the remaining five GDH forms. All seven forms were localized in mitochondria. Immunological similarity was found between form 1 and plastid GDH.  相似文献   

17.
The enzyme glutamate dehydrogenase (GDH) plays an important role in integrating mitochondrial metabolism of amino acids and ammonia. Glutamate may function as a respiratory substrate in the oxidative deamination direction of GDH, which also yields α-ketoglutarate. In the reductive amination direction GDH produces glutamate, which can then be used for other cellular needs such as amino acid synthesis via transamination. The production or removal of ammonia by GDH is also an important consequence of flux through this enzyme. However, the abundance and role of GDH in cellular metabolism varies by tissue. Here we discuss the different roles the house-keeping form of GDH has in major organs of the body and how GDH may be important to regulating aspects of intermediary metabolism. The near-equilibrium poise of GDH in liver and controversy over cofactor specificity and regulation is discussed, as well as, the role of GDH in regulation of renal ammoniagenesis, and the possible importance of GDH activity in the release of nitrogen carriers by the small intestine.  相似文献   

18.
Pathways of ammonia assimilation into glutamic acid in Bacillus macerans were investigated by measurements of the specific activities of glutamate dehydrogenase (GDH), glutamine synthetase, and glutamate synthase. In ammonia-rich medium, GDH was the predominant pathway of ammonia assimilation. In nitrogen-fixing cells in which the intracellular NH4+ concentration was 1.4 +/- 0.5 mM, the activity of GDH with a Km of 2.2 mM for NH4+ was found to be severalfold higher than that of glutamate synthase. The result suggests that GDH plays a significant role in the assimilation of NH4+ in N2-fixing B. macerans.  相似文献   

19.
A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework and minimization of metabolic adjustments (MOMA) as objective function.Deletion of NADPH-dependent glutamate dehydrogenase encoded by GDH1 was identified as the best target gene for the improvement of sesquiterpene biosynthesis in yeast. Deletion of this gene enhances the available NADPH in the cytosol for other NADPH requiring enzymes, including HMG-CoA reductase. However, since disruption of GDH1 impairs the ammonia utilization, simultaneous over-expression of the NADH-dependent glutamate dehydrogenase encoded by GDH2 was also considered in this study.Deletion of GDH1 led to an approximately 85% increase in the final cubebol titer. However, deletion of this gene also caused a significant decrease in the maximum specific growth rate. Over-expression of GDH2 did not show a further effect on the final cubebol titer but this alteration significantly improved the growth rate compared to the GDH1 deleted strain.  相似文献   

20.
Hyperinsulinism-hyperammonemia syndrome is due either to hyperactivity of GDH or impaired inhibition of GDH by GTP. We have investigated the effect of Cimicifuga heracleifolia extract on the activities of glutamate dehydrogenase (GDH) in cultured rat islets. When the extract was present in the culture medium for 24 h prior to cell harvest, the Vmax of GDH was decreased by 45% with no significant change in Km. In addition, the concentration of alpha-ketoglutarate increased by approximately 39%, and glutamate decreased by 48%. Perfusion of islets with C. heracleifolia extract reduced insulin release by up to 47%. Although the relation between GDH activity and insulin release remains to be clarified, our results suggest that C. heracleifolia extract regulates insulin release by altering GDH activity in primary cultured islets and that this natural compound may be used to modulate GDH activity in patients with hyperinsulinism-hyperammonemia syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号