首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate myosin Va is a dimeric processive motor that walks on actin filaments to deliver cargo. In contrast, the two class V myosins in budding yeast, Myo2p and Myo4p, are non-processive (Reck-Peterson, S. L., Tyska, M. J., Novick, P. J., and Mooseker, M. S. (2001) J. Cell Biol. 153, 1121-1126). We previously showed that a chimera with the motor domain of Myo4p on the backbone of vertebrate myosin Va was processive, demonstrating that the Myo4p motor domain has a high duty ratio. Here we examine the properties of a chimera containing the rod and globular tail of Myo4p joined to the motor domain and neck of mouse myosin Va. Surprisingly, the adaptor protein She3p binds to the rod region of Myo4p and forms a homogeneous single-headed myosin-She3p complex, based on sedimentation equilibrium and velocity data. We propose that She3p forms a heterocoiled-coil with Myo4p and is a subunit of the motor. She3p does not affect the maximal actin-activated ATPase in solution or the velocity of movement in an ensemble in vitro motility assay. At the single molecule level, the monomeric myosin-She3p complex showed no processivity. When this construct was dimerized with a leucine zipper, short processive runs were obtained. Robust continuous movement was observed when multiple monomeric myosin-She3p motors were bound to a quantum dot "cargo." We propose that continuous transport of mRNA by Myo4p-She3p in yeast is accomplished either by multiple high duty cycle monomers or by molecules that may be dimerized by She2p, the homodimeric downstream binding partner of She3p.  相似文献   

2.
The motor properties of the two yeast class V myosins, Myo2p and Myo4p, were examined using in vitro motility assays. Both myosins are active motors with maximum velocities of 4.5 microm/s for Myo2p and 1.1 microm/s for Myo4p. Myo2p motility is Ca(2+) insensitive. Both myosins have properties of a nonprocessive motor, unlike chick myosin-Va (M5a), which behaves as a processive motor when assayed under identical conditions. Additional support for the idea that Myo2p is a nonprocessive motor comes from actin cosedimentation assays, which show that Myo2p has a low affinity for F-actin in the presence of ATP and Ca(2+), unlike chick brain M5a. These studies suggest that if Myo2p functions in organelle transport, at least five molecules of Myo2p must be present per organelle to promote directed movement.  相似文献   

3.
Myo4p, one of two class V myosins in budding yeast, continuously transports messenger RNA (mRNA) cargo in the cell but is nonprocessive when characterized in vitro. The adapter protein She3p tightly binds to the Myo4p rod, forming a single-headed motor complex. In this paper, we show that two Myo4p-She3p motors are recruited by the tetrameric mRNA-binding protein She2p to form a processive double-headed complex. The binding site for She3p was mapped to a single α helix that protrudes at right angles from She2p. Processive runs of several micrometers on yeast actin-tropomyosin filaments were observed only in the presence of She2p, and, thus, motor activity is regulated by cargo binding. While moving processively, each head steps ~72 nm in a hand-over-hand motion. Coupling two high-duty cycle monomeric motors via a common cargo-binding adapter protein creates a complex with transport properties comparable with a single dimeric processive motor such as vertebrate myosin Va.  相似文献   

4.
BACKGROUND: Myosins are motor proteins involved in processes like cell motility, vesicle transport, or cytokinesis. In a variety of organisms, a novel group of proteins forming the UCS (UNC-45/CRO1/SHE4) domain-containing family are essential for proper myosin function. The Saccharomyces cerevisae UCS domain protein She4p is involved in two myosin-requiring events, endocytosis and mRNA localization. RESULTS: In contrast to UCS domain proteins from other organisms that interact with class II myosins, we demonstrate that She4p associates with yeast class I and class V myosins. She4p binds to motor domains of class V myosin Myo4p and class I myosin Myo5p, and this binding depends on She4p's UCS domain. In vivo, She4p is essential for the function and localization of Myo3p, Myo4p, and Myo5p (but not of Myo2p) and for colocalization of class I myosins with cortical actin patches. In vitro, She4p stimulates binding of Myo5p to filamentous actin. Wild-type She4p, but not a mutant lacking the UCS domain, accumulates in a cap-like structure at the bud tip. This localization requires Myo2p and actin, suggesting a Myo2-dependent mechanism by which She4p is targeted to the bud cap. Localization of She4p is essential for proper positioning and myosin-actin association of cortical Myo5p. CONCLUSIONS: Our results suggest that She4p is a novel myosin motor domain binding protein and operates as a localized regulator of myosin function of class I and likely class V myosins.  相似文献   

5.
Budding yeast possesses one myosin-II, Myo1p, whereas fission yeast has two, Myo2p and Myp2p, all of which contribute to cytokinesis. We find that chimeras consisting of Myo2p or Myp2p motor domains fused to the tail of Myo1p are fully functional in supporting budding yeast cytokinesis. Remarkably, the tail alone of budding yeast Myo1p localizes to the contractile ring, supporting both its constriction and cytokinesis. In contrast, fission yeast Myo2p and Myp2p require both the catalytic head domain as well as tail domains for function, with the tails providing distinct functions (Bezanilla and Pollard, 2000). Myo1p is the first example of a myosin whose cellular function does not require a catalytic motor domain revealing a novel mechanism of action for budding yeast myosin-II independent of actin binding and ATPase activity.  相似文献   

6.
Mammalian myosin IXb (Myo9b) has been shown to exhibit unique motor properties in that it is a single-headed processive motor and the rate-limiting step in its chemical cycle is ATP hydrolysis. Furthermore, it has been reported to move toward the minus- and the plus-end of actin filaments. To analyze the contribution of the light chain-binding domain to the movement, processivity, and directionality of a single-headed processive myosin, we expressed constructs of Caenorhabditis elegans myosin IX (Myo9) containing either the head (Myo9-head) or the head and the light chain-binding domain (Myo9-head-4IQ). Both constructs supported actin filament gliding and moved toward the plus-end of actin filaments. We identified in the head of class IX myosins a calmodulin-binding site at the N terminus of loop 2 that is unique among the myosin superfamily members. Ca2+/calmodulin negatively regulated ATPase and motility of the Myo9-head. The Myo9-head demonstrated characteristics of a processive motor in that it supported actin filament gliding and pivoting at low motor densities. Quantum dot-labeled Myo9-head moved along actin filaments with a considerable run length and frequently paused without dissociating even in the presence of obstacles. We conclude that class IX myosins are plus-end-directed motors and that even a single head exhibits characteristics of a processive motor.  相似文献   

7.
Myosin V is an actin-based motor protein involved in intracellular cargo transport [1]. Given this physiological role, it was widely assumed that all class V myosins are processive, able to take multiple steps along actin filaments without dissociating. This notion was challenged when several class?V myosins were characterized as nonprocessive in?vitro, including Myo2p, the essential class V myosin from S.?cerevisiae [2-6]. Myo2p moves cargo including secretory vesicles and other organelles for several microns along actin cables in?vivo. This demonstrated cargo transporter must therefore either operate in small ensembles or?behave processively in the cellular context. Here we show?that Myo2p moves processively in?vitro as a single motor when it walks on an actin track that more closely resembles the actin cables found in?vivo. The key to processivity is tropomyosin: Myo2p is not processive on bare actin?but highly processive on actin-tropomyosin. The major yeast tropomyosin isoform, Tpm1p, supports the most robust processivity. Tropomyosin slows the rate of MgADP release, thus increasing the time the motor spends strongly attached to actin. This is the first example of tropomyosin switching a motor from nonprocessive to processive motion on actin.  相似文献   

8.
Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p   总被引:1,自引:0,他引:1  
Class V myosins are motor proteins with functions in vesicle transport, organelle segregation, and RNA localization. Although they have been extensively studied, only little is known about the regulation of their spatial distribution. Here we demonstrate that a GFP fusion protein of the budding yeast class V myosin Myo4p accumulates at the bud cortex and is a component of highly dynamic cortical particles. Bud-specific enrichment depends on Myo4p's association with its cargo, a ribonucleoprotein complex containing the RNA-binding protein She2p. Cortical accumulation of Myo4p at the bud tip can be explained by a transient retention mechanism that requires SHE2 and, apparently, localized mRNAs bound to She2p. A mutant She2 protein that is unable to recognize its cognate target mRNA, ASH1, fails to localize Myo4p. Mutant She2p accumulates inside the nucleus, indicating that She2p shuttles between the nucleus and cytoplasm and is exported in an RNA-dependent manner. Consistently, inhibition of nuclear mRNA export results in nuclear accumulation of She2p and cytoplasmic Myo4p mislocalization. Loss of She2p can be complemented by direct targeting of a heterologous lacZ mRNA to a complex of Myo4p and its associated adaptor She3p, suggesting that She2p's function in Myo4p targeting is to link an mRNA to the motor complex.  相似文献   

9.
Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.  相似文献   

10.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.  相似文献   

11.
We investigated the role of regulatory light-chain (Rlc1p) and heavy-chain phosphorylation in controlling fission yeast myosin-II (Myo2p) motor activity and function during cytokinesis. Phosphorylation of Rlc1p leads to a fourfold increase in Myo2p''s in vitro motility rate, which ensures effective contractile ring constriction and function. Surprisingly, unlike with smooth muscle and nonmuscle myosin-II, RLC phosphorylation does not influence the actin-activated ATPase activity of Myo2p. A truncated form of Rlc1p lacking its extended N-terminal regulatory region (including phosphorylation sites) supported maximal Myo2p in vitro motility rates and normal contractile ring function. Thus, the unphosphorylated N-terminal extension of Rlc1p can uncouple the ATPase and motility activities of Myo2p. We confirmed the identity of one out of two putative heavy-chain phosphorylation sites previously reported to control Myo2p function and cytokinesis. Although in vitro studies indicated that phosphorylation at Ser-1444 is not needed for Myo2p motor activity, phosphorylation at this site promotes the initiation of contractile ring constriction.  相似文献   

12.
A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.  相似文献   

13.
Myo4p, a single-headed and nonprocessive class V myosin in budding yeast, transports >20 different mRNAs asymmetrically to the bud. Here, we determine the features of the Myo4p motor that are necessary for correct localization of ASH1 mRNA to the daughter cell, a process that also requires the adapter protein She3p and the dimeric mRNA-binding protein She2p. The rod region of Myo4p, but not the globular tail, is essential for correct localization of ASH1 mRNA, confirming that the rod contains the primary binding site for She3p. The requirement for both the rod region and She3p can be bypassed by directly coupling the mRNA-binding protein She2p to Myo4p. ASH1 mRNA was also correctly localized when one motor was bound per dimeric She2p, or when two motors were joined together by a leucine zipper. Because multiple mRNAs are cotransported to the bud, it is likely that this process involves multiple motor transport regardless of the number of motors per zip code. Our results show that the most important feature for correct localization is the retention of coupling between all the members of the complex (Myo4p–She3p–She2p–ASH1 mRNA), which is aided by She3p being a tightly bound subunit of Myo4p.  相似文献   

14.
She4p/Dim1p, a member of the UNC-45/CRO1/She4p (UCS) domain-containing protein family, is required for endocytosis, polarization of actin cytoskeleton, and polarization of ASH1 mRNA in Saccharomyces cerevisiae. We show herein that She4p/Dim1p is involved in endocytosis and actin polarization through interactions with the type I myosins Myo3p and Myo5p. Two-hybrid and biochemical experiments showed that She4p/Dim1p interacts with the motor domain of Myo3/5p through its UCS domain. She4p/Dim1p was required for Myo5p localization to cortical patch-like structures. Using random mutagenesis of the motor region of MYO5, we identified four independent dominant point mutations that suppress the temperature-sensitive growth phenotype of the she4/dim1 null mutant. All of the amino acid substitutions caused by these mutations, V164I, N168I, N209S, and K377M, could suppress the defects of endocytosis and actin polarization of the she4/dim1 mutant as well. She4p/Dim1p also showed two-hybrid interactions with the motor domain of a type II myosin Myo1p and type V myosins Myo2p and Myo4p, and was required for proper localization of Myo4p, which regulates polarization of ASH1 mRNA. Our results suggest that She4p/Dim1p is required for structural integrity or regulation of the motor domain of unconventional myosins.  相似文献   

15.
We purified native Myo2p/Cdc4p/Rlc1p (Myo2), the myosin-II motor required for cytokinesis by Schizosaccharomyces pombe. The Myo2p heavy chain associates with two light chains, Cdc4p and Rlc1p. Although crude Myo2 supported gliding motility of actin filaments in vitro, purified Myo2 lacked this activity in spite of retaining full Ca-ATPase activity and partial actin-activated Mg-ATPase activity. Unc45-/Cro1p-/She4p-related (UCS) protein Rng3p restored the full motility and actin-activated Mg-ATPase activity of purified Myo2. The COOH-terminal UCS domain of Rng3p alone restored motility to pure Myo2. Thus, Rng3p contributes directly to the motility activity of native Myo2. Consistent with a role in Myo2 activation, Rng3p colocalizes with Myo2p in the cytokinetic contractile ring. The absence of Rlc1p or mutations in the Myo2p head or Rng3p compromise the in vitro motility of Myo2 and explain the defects in cytokinesis associated with some of these mutations. In contrast, Myo2 with certain temperature-sensitive forms of Cdc4p has normal motility, so these mutations compromise other functions of Cdc4p required for cytokinesis.  相似文献   

16.
Myo4p is a nonessential type V myosin required for the bud tip localization of ASH1 and IST2 mRNA. These mRNAs associate with Myo4p via the She2p and She3p proteins. She3p is an adaptor protein that links Myo4p to its cargo. She2p binds to ASH1 and IST2 mRNA, while She3p binds to both She2p and Myo4p. Here we show that Myo4p and She3p, but not She2p, are required for the inheritance of cortical ER in the budding yeast Saccharomyces cerevisiae. Consistent with this observation, we find that cortical ER inheritance is independent of mRNA transport. Cortical ER is a dynamic network that forms cytoplasmic tubular connections to the nuclear envelope. ER tubules failed to grow when actin polymerization was blocked with the drug latrunculin A (Lat-A). Additionally, a reduction in the number of cytoplasmic ER tubules was observed in Lat-A-treated and myo4Delta cells. Our results suggest that Myo4p and She3p facilitate the growth and orientation of ER tubules.  相似文献   

17.
Myosin V is an actin-based motor essential for a variety of cellular processes including skin pigmentation, cell separation and synaptic transmission. Myosin V transports organelles, vesicles and mRNA by binding, directly or indirectly, to cargo-bound receptors via its C-terminal globular tail domain (GTD). We have used the budding yeast myosin V Myo2p to shed light on the mechanism of how Myo2p interacts with post-Golgi carriers. We show that the Rab/Ypt protein Ypt32p, which associates with membranes of the trans -Golgi network, secretory vesicles and endosomes and is related to the mammalian Rab11, interacts with the Myo2p GTD within a region previously identified as the 'vesicle binding region'. Furthermore, we show that the essential myosin light chain 1 (Mlc1p), required for vesicle delivery at the mother-bud neck during cytokinesis, binds to the Myo2p GTD in a region overlapping that of Ypt32p. Our data are consistent with a role of Ypt32p and Mlc1p in regulating the interaction of post-Golgi carriers with Myo2p subdomain II.  相似文献   

18.
Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.  相似文献   

19.
The assembly and composition of ribonucleic acid (RNA)–transporting particles for asymmetric messenger RNA (mRNA) localization is not well understood. During mitosis of budding yeast, the Swi5p-dependent HO expression (SHE) complex transports a set of mRNAs into the daughter cell. We recombinantly reconstituted the core SHE complex and assessed its properties. The cytoplasmic precomplex contains only one motor and is unable to support continuous transport. However, a defined interaction with a second, RNA-bound precomplex after its nuclear export dimerizes the motor and activates processive RNA transport. The run length observed in vitro is compatible with long-distance transport in vivo. Surprisingly, SHE complexes that either contain or lack RNA cargo show similar motility properties, demonstrating that the RNA-binding protein and not its cargo activates motility. We further show that SHE complexes have a defined size but multimerize into variable particles upon binding of RNAs with multiple localization elements. Based on these findings, we provide an estimate of number, size, and composition of such multimeric SHE particles in the cell.  相似文献   

20.
Cell division in a number of eukaryotes, including the fission yeast Schizosaccharomyces pombe, is achieved through a medially placed actomyosin-based contractile ring. Although several components of the actomyosin ring have been identified, the mechanisms regulating ring assembly are still not understood. Here, we show by biochemical and mutational studies that the S.pombe actomyosin ring component Cdc4p is a light chain associated with Myo2p, a myosin II heavy chain. Localization of Myo2p to the medial ring depended on Cdc4p function, whereas localization of Cdc4p at the division site was independent of Myo2p. Interestingly, the actin-binding and motor domains of Myo2p are not required for its accumulation at the division site although the motor activity of Myo2p is essential for assembly of a normal actomyosin ring. The initial assembly of Myo2p and Cdc4p at the division site requires a functional F-actin cytoskeleton. Once established, however, F-actin is not required for the maintenance of Cdc4p and Myo2p medial rings, suggesting that the attachment of Cdc4p and Myo2p to the division site involves proteins other than actin itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号