首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Interactions between Schwann cells and axons are critical for the development and function of myelinated axons. Two recent studies (see Maurel et al. on p. 861 of this issue; Spiegel et al., 2007) report that the nectin-like (Necl) proteins Necl-1 and -4 are internodal adhesion molecules that are critical for myelination. These studies suggest that Necl proteins mediate a specific interaction between Schwann cells and axons that allows proper communication of the signals that trigger myelination.  相似文献   

2.
The development and maintenance of myelinated nerves in the PNS requires constant and reciprocal communication between Schwann cells and their associated axons. However, little is known about the nature of the cell-surface molecules that mediate axon-glial interactions at the onset of myelination and during maintenance of the myelin sheath in the adult. Based on the rationale that such molecules contain a signal sequence in order to be presented on the cell surface, we have employed a eukaryotic-based, signal-sequence-trap approach to identify novel secreted and membrane-bound molecules that are expressed in myelinating and non-myelinating Schwann cells. Using cDNA libraries derived from dbcAMP-stimulated primary Schwann cells and 3-day-old rat sciatic nerve mRNAs, we generated an extensive list of novel molecules expressed in myelinating nerves in the PNS. Many of the identified proteins are cell-adhesion molecules (CAMs) and extracellular matrix (ECM) components, most of which have not been described previously in Schwann cells. In addition, we have identified several signaling receptors, growth and differentiation factors, ecto-enzymes and proteins that are associated with the endoplasmic reticulum and the Golgi network. We further examined the expression of several of the novel molecules in Schwann cells in culture and in rat sciatic nerve by primer-specific, real-time PCR and in situ hybridization. Our results indicate that myelinating Schwann cells express a battery of novel CAMs that might mediate their interactions with the underlying axons.  相似文献   

3.
《The Journal of cell biology》1993,123(5):1223-1236
Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina.  相似文献   

4.
Immature Schwann cells of the rat sciatic nerve can differentiate into myelin-forming or non-myelin-forming cells. The factors that influence this divergent development are unknown but certain markers such as galactocerebroside distinguish the two cell populations at an early stage of Schwann cell differentiation. Because myelination requires extensive changes in cell morphology, we have investigated the composition and structure of the Schwann cell cytoskeleton at a time when these cells become committed to myelination. Here we show that Schwann cells express a cytoskeletal protein of M(r) 145 before diverging into the myelin-forming path, i.e., before they acquire cell-surface galactocerobroside. The p145 protein has the characteristics of an intermediate filament (IF) protein and immunoelectron microscopy shows that it colocalizes with vimentin, which suggests that these two proteins can coassemble into IFs. Elevated intracellular cAMP levels, which can mimic some of the early effects of axons on Schwann cell differentiation, induced p145 synthesis, therefore, we conclude that myelin-forming Schwann cells express this protein at a very early stage in their development. Immunological comparisons with other IF proteins revealed a close similarity between p145 and the neurofilament protein NF-M; the identification of p145 as NF-M was confirmed by isolating and sequencing a full-length clone from a Schwann cell cDNA library. These data demonstrate that Schwann cells remodel their IFs by expressing NF-M before acquiring the myelin-forming phenotype and that IF proteins of the neurofilament-type are not restricted to neurons in the vertebrate nervous system.  相似文献   

5.
Voltage-dependent sodium (Na(+)) channels are highly concentrated at nodes of Ranvier in myelinated axons and play a key role in promoting rapid and efficient conduction of action potentials by saltatory conduction. The molecular mechanisms that direct their localization to the node are not well understood but are believed to involve contact-dependent signals from myelinating Schwann cells and interactions of Na(+) channels with the cytoskeletal protein, ankyrin G. Two cell adhesion molecules (CAMs) expressed at the axon surface, Nr-CAM and neurofascin, are also linked to ankyrin G and accumulate at early stages of node formation, suggesting that they mediate contact-dependent Schwann cell signals to initiate node development. To examine the potential role of Nr-CAM in this process, we treated myelinating cocultures of DRG (dorsal root ganglion) neurons and Schwann cells with an Nr-CAM-Fc (Nr-Fc) fusion protein. Nr-Fc had no effect on initial axon-Schwann cell interactions, including Schwann cell proliferation, or on the extent of myelination, but it strikingly and specifically inhibited Na(+) channel and ankyrin G accumulation at the node. Nr-Fc bound directly to neurons and clustered and coprecipitated neurofascin expressed on axons. These results provide the first evidence that neurofascin plays a major role in the formation of nodes, possibly via interactions with Nr-CAM.  相似文献   

6.
7.
Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.  相似文献   

8.
This study investigated the function of the adhesion molecule L1 in unmyelinated fibers of the peripheral nervous system (PNS) by analysis of L1- deficient mice. We demonstrate that L1 is present on axons and Schwann cells of sensory unmyelinated fibers, but only on Schwann cells of sympathetic unmyelinated fibers. In L1-deficient sensory nerves, Schwann cells formed but failed to retain normal axonal ensheathment. L1-deficient mice had reduced sensory function and loss of unmyelinated axons, while sympathetic unmyelinated axons appeared normal. In nerve transplant studies, loss of axonal-L1, but not Schwann cell-L1, reproduced the L1-deficient phenotype. These data establish that heterophilic axonal-L1 interactions mediate adhesion between unmyelinated sensory axons and Schwann cells, stabilize the polarization of Schwann cell surface membranes, and mediate a trophic effect that assures axonal survival.  相似文献   

9.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

10.
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.  相似文献   

11.
12.
We have investigated the potential role of contactin and contactin-associated protein (Caspr) in the axonal–glial interactions of myelination. In the nervous system, contactin is expressed by neurons, oligodendrocytes, and their progenitors, but not by Schwann cells. Expression of Caspr, a homologue of Neurexin IV, is restricted to neurons. Both contactin and Caspr are uniformly expressed at high levels on the surface of unensheathed neurites and are downregulated during myelination in vitro and in vivo. Contactin is downregulated along the entire myelinated nerve fiber. In contrast, Caspr expression initially remains elevated along segments of neurites associated with nascent myelin sheaths. With further maturation, Caspr is downregulated in the internode and becomes strikingly concentrated in the paranodal regions of the axon, suggesting that it redistributes from the internode to these sites. Caspr expression is similarly restricted to the paranodes of mature myelinated axons in the peripheral and central nervous systems; it is more diffusely and persistently expressed in gray matter and on unmyelinated axons. Immunoelectron microscopy demonstrated that Caspr is localized to the septate-like junctions that form between axons and the paranodal loops of myelinating cells. Caspr is poorly extracted by nonionic detergents, suggesting that it is associated with the axon cytoskeleton at these junctions. These results indicate that contactin and Caspr function independently during myelination and that their expression is regulated by glial ensheathment. They strongly implicate Caspr as a major transmembrane component of the paranodal junctions, whose molecular composition has previously been unknown, and suggest its role in the reciprocal signaling between axons and glia.  相似文献   

13.
The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed and fail to myelinate; lentiviral-mediated expression of NRG1 type III rescues these defects. Expression also converts the normally unmyelinated axons of sympathetic neurons to myelination. Nerve fibers of mice haploinsufficient for NRG1 type III are disproportionately unmyelinated, aberrantly ensheathed, and hypomyelinated, with reduced conduction velocities. Type III is the sole NRG1 isoform retained at the axon surface and activates PI 3-kinase, which is required for Schwann cell myelination. These results indicate that levels of NRG1 type III, independent of axon diameter, provide a key instructive signal that determines the ensheathment fate of axons.  相似文献   

14.
The development of the peripheral nervous system (PNS) is a highly dynamic process, during which motor and sensory axons innervate distal targets, such as skeletal muscles and skin. Axonal function depends critically on support from Schwann cells, the main glial cell type in the PNS. Schwann cells originate from the neural crest, migrate along outgrowing axons and associate with axons along their entire length prior to ensheathment or myelination. How axonal growth and the migration of Schwann cells is coordinated at the level of reciprocal axon-glial signaling is the fascinating subject of ongoing research. Neuregulin-1 (NRG1) type III, an axonal membrane-bound ligand for receptor tyrosine kinases of the ErbB family, acts as a “master regulator” of peripheral myelination. In addition, NRG1-ErbB signaling directs the development of the Schwann cell lineage and regulates the proliferation and survival of Schwann cells. Studies in zebrafish have identified a direct role of NRG1 type III in Schwann cell migration, but to what extend NRG1 serves a similar function in the mammalian PNS is not clear. We have employed a mouse superior cervical ganglion explant culture system, in which the migration of endogenous Schwann cells along outgrowing axons can be visualized by time-lapse imaging. Using this approach, we found that NRG1 type III-ErbB signaling regulates the colonization of distal axonal segments by Schwann cells. However, our data suggest an indirect effect of NRG1 type III-ErbB signaling via the support of Schwann cell survival in proximal axonal regions rather than a direct effect on Schwann cell motility.  相似文献   

15.
The myelin sheaths that surround the thick axons of the peripheral nervous system are produced by the highly specialized Schwann cells. Differentiation of Schwann cells and myelination occur in discrete steps. Each of these requires coordinated expression of specific proteins in a precise sequence, yet the regulatory mechanisms controlling protein expression during these events are incompletely understood. Here we report that Schwann cell-specific ablation of the enzyme Dicer1, which is required for the production of small non-coding regulatory microRNAs, fully arrests Schwann cell differentiation, resulting in early postnatal lethality. Dicer−/− Schwann cells had lost their ability to myelinate, yet were still capable of sorting axons. Both cell death and, paradoxically, proliferation of immature Schwann cells was markedly enhanced, suggesting that their terminal differentiation is triggered by growth-arresting regulatory microRNAs. Using microRNA microarrays, we identified 16 microRNAs that are upregulated upon myelination and whose expression is controlled by Dicer in Schwann cells. This set of microRNAs appears to drive Schwann cell differentiation and myelination of peripheral nerves, thereby fulfilling a crucial function for survival of the organism.  相似文献   

16.
We are interested in the signaling between axons and glia that leads to myelination and maintenance of the myelin internode, and we have focused on the role of neuregulins and their receptors. Neuregulins are a family of ligands that includes heregulin, neu differentiation factor, glial growth factor, and the acetylcholine receptor–inducing activity. Three signal transducing transmembrane receptors for neuregulins, which bear significant homology to the EGF receptor, are currently known: HER2 (erbB2), HER3 (erbB3), and HER4 (erbB4). We have found that oligodendrocite–type II astrocyte (O2A) progenitor cells and mature oligodendrocytes express HER2 and HER4 but no HER3. Schwann cells express HER2 and HER3 but little HER4. In O2A progenitor cells and oligodendrocytes, recombinant neuregulin induces the rapid tyrosine phosphorylation of only HER4. HER2 is not phosphorylated in cells of the oligodendrocyte lineage, but a physical interaction between HER2 and HER4 was detected in coimmunoprecipitation experiments. In Schwann cells, neuregulin induces the phosphorylation of both HER2 and HER3. Coimmunoprecipitation experiments indicate that receptor activation in Schwann cells results in the formation of HER2:HER3 heterodimers. Neuregulin localized immunocytochemically was present on neurites of cultured dorsal root ganglion neurons, and it was released into the medium in a form that promoted receptor tyrosine phosphorylation. Neuregulins therefore meet important criteria expected of molecules involved in axonal-glial signaling. The use of unique neuregulin receptor combinations in oligodendrocytes and Schwann cells likely results in recruitment of different signaling pathways and thus provides a basis for different biological responses.  相似文献   

17.
To investigate the influence of inflammatory cytokines on the potential of peripheral nerves to regenerate, we analyzed the effect of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) on the ability of immortalized Schwann cells to mediate outgrowth of neurites from primary DRG neurons. We found that IFN-gamma and TNF-alpha synergistically inhibited the neurite outgrowth-promoting properties of the Schwann cells by specifically down-regulating myelin-associated glycoprotein (MAG) at the levels of mRNA and cell surface protein by approximately 60%. Antibodies to MAg inhibited the outgrowth of neurites on Schwann cells to the same extent as treatment with the two cytokines. Since MAG appears to be involved in both neurite outgrowth and myelination, our findings may provide evidence for a mechanism, by which inflammatory cytokines interfere with Schwann cell-neuron interactions.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2439-2448
The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post-embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons and axons ensheathed by non- myelinating Schwann cells. Schwann cells were also positive for L1 and N-CAM in their non-myelinating state and at the onset of myelination, when the Schwann cell processes had turned approximately 1.5 loops. Thereafter, neither axon nor Schwann cell could be detected to express the L1 antigen, whereas N-CAM was found in the periaxonal area and, more weakly, in compact myelin of myelinated fibers. Compact myelin, Schmidt-Lanterman incisures, paranodal loops, and finger-like processes of Schwann cells at nodes of Ranvier were L1-negative. At the nodes of Ranvier, the axolemma was also always L1- and N-CAM-negative. The L2/HNK-1 carbohydrate epitope coincided in its cellular and subcellular localization most closely to that observed for L1. MAG appeared on Schwann cells at the time L1 expression ceased. MAG was then expressed at sites of axon-myelinating Schwann cell apposition and non-compacted loops of developing myelin. When compaction of myelin occurred, MAG remained present only at the axon-Schwann cell interface; Schmidt- Lanterman incisures, inner and outer mesaxons, and paranodal loops, but not at finger-like processes of Schwann cells at nodes of Ranvier or compacted myelin. All three adhesion molecules and the L2/HNK-1 epitope could be detected in a non-uniform staining pattern in basement membrane of Schwann cells and collagen fibrils of the endoneurium. MBP was detectable in compacted myelin, but not in Schmidt-Lanterman incisures, inner and outer mesaxon, paranodal loops, and finger-like processes at nodes of Ranvier, nor in the periaxonal regions of myelinated fibers, thus showing a complementary distribution to MAG. These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space. From this sequence it may be deduced that L1 and N-CAM are involved in fasciculation, initial axon-Schwann cell interaction, and onset of myelination, with MAG to follow and MBP to appear only in compacted myelin. In contrast to L1, N- CAM may be further involved in the maintenance of compact myelin and axon-myelin apposition of larger diameter axons.  相似文献   

19.
In peripheral nerves, Schwann cells form the myelin sheath that insulates axons and allows rapid propagation of action potentials. Although a number of regulators of Schwann cell development are known, the signaling pathways that control myelination are incompletely understood. In this study, we show that Gpr126 is essential for myelination and other aspects of peripheral nerve development in mammals. A mutation in Gpr126 causes a severe congenital hypomyelinating peripheral neuropathy in mice, and expression of differentiated Schwann cell markers, including Pou3f1, Egr2, myelin protein zero and myelin basic protein, is reduced. Ultrastructural studies of Gpr126-/- mice showed that axonal sorting by Schwann cells is delayed, Remak bundles (non-myelinating Schwann cells associated with small caliber axons) are not observed, and Schwann cells are ultimately arrested at the promyelinating stage. Additionally, ectopic perineurial fibroblasts form aberrant fascicles throughout the endoneurium of the mutant sciatic nerve. This analysis shows that Gpr126 is required for Schwann cell myelination in mammals, and defines new roles for Gpr126 in axonal sorting, formation of mature non-myelinating Schwann cells and organization of the perineurium.  相似文献   

20.
Li  Y.  Field  P. M.  Raisman  G. 《Brain Cell Biology》1999,28(4-5):417-427
Small, circumscribed electrolytic lesions were made in the upper cervical corticospinal tract in adult rats. In the centre of the lesion, the axons and all other tissue elements were totally destroyed. Surrounding this region of destruction is an area of tissue which is only partially damaged. In this area TUNEL positive staining of contiguous rows of tract glial cells indicates massive oligodendrocytic apoptosis at 1–3 days after operation, but axons, astrocytes and blood vessels survive. From around 4 days, the corticospinal axons in this area are demyelinated, and the microglia contain ingested myelin, identified in electron micrographs as characteristic MBP immunoreactive laminar cytoplasmic bodies. After around 3 weeks, large numbers of Schwann cells, continuous with those on the pial surface of the spinal cord, accumulate along the lesion track and selectively infiltrate the perilesional reactive area, where they mingle intimately with the phagocytic microglia. Electron micrographs show that at this time basal lamina-enclosed Schwann cell processes establish non-myelinated ensheathment of axons. From around 4 weeks after operation, prominent Schwann cell myelination is indicated by P0 immunoreactivity, and peripheral type, one-to-one myelination in electron micrographs. Thus the effect of the selective loss of oligodendrocytes is to first activate microglia, and then to induce a replacement of myelin by Schwann cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号