首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule.

The absorption and fluorescence excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca2+ strongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes.

With mitochondrial membranes an effect of Ca2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it.

From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholipid moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   


2.
The binding of different uncouplers of oxidative phosphorylation to rat-liver mitochondria was measured. At pH 7.2 and about 0.7 mg mitochondrial protein/ml the percentage bound of the uncoupler added was 84% for 2,3,4,5,6-pentachlorophenol (PCP), 40% for carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), 35% for 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB), 4% for α′,α′-bis (hexafluoroacetonyl)acetone (1799), and less than 4% for 2,4-dinitrophenol. These percentages are constant up to amounts of uncoupler added several times the one needed for maximal uncoupling. The values found for FCCP and TTFB are in contradiction to the proposed stoichiometric interaction of uncouplers with the coupling sites of the mitochondrial membrane.From titration experiments of the rate of O2 uptake by rat-liver mitochondria in State 4 as a function of the uncoupler concentration in the presence of albumin or of different types of liposomes the conclusion is drawn that the negative surface charge of the mitochondrial phospholipids may be an important parameter in determining the binding of anionic uncouplers to rat-liver mitochondria.  相似文献   

3.
The potent weakly acidic uncoupler SF 6847 was modified by methylation of its phenolic OH group, and the effect of the resulting derivative, with no acid-dissociable group, on oxidative phosphorylation in rat liver mitochondria was examined. The methylated SF 6847 did not induce uncoupling at up to 40 microM, while SF 6847 uncoupled oxidative phosphorylation completely at about 20 nM, indicating that the acid-dissociable group is essential for uncoupling. The O-methylated SF 6847 at 20 microM did, however, inhibit state 3 respiration of mitochondria, although it did not inhibit electron-flow through the respiratory chain, ATPase activated by weakly acidic uncouplers or Pi-ATP exchange. At the same concentration, it also inhibited ATP synthesis in submitochondrial particles. These features are different from those of known inhibitors of oxidative phosphorylation. Thus, O-methylated SF 6847 is a unique inhibitor of oxidative phosphorylation. The possible identity of the uncoupler binding protein is discussed on the basis of these results.  相似文献   

4.
2-Nitro-4-azidocarbonylcyanide phenylhydrazone (N3CCP), a potent water-soluble uncoupler at pH 6–8, was used to determine the nature of binding of the uncoupler to the mitochondrial membrane. Equilibrium binding studies with N3CCP showed that isolated pigeon heart mitochondria contain 1.6 ± 0.3 high-affinity binding sites per cytochrome a. Several different types of chemical uncouplers were also found to bind to the same high-affinity site as evidenced by their observed competition with N3CCP. The potassium ionophore valinomycin and the respiratory inhibitor antimycin A did not affect uncoupler binding to the high-affinity sites nor did active respiration of the mitochondria. The number of high-affinity binding sites was essentially unchanged by extraction of 80% of the mitochondrial phospholipids. The ability of the uncouplers to bind to the high-affinity binding sites is proportional to the uncoupler activities. These data support the idea that the high-affinity binding sites of mitochondria are protein(s) which are involved in the coupling reactions of oxidative phosphorylation and that uncoupler bound at these sites is responsible for the uncoupling activity.  相似文献   

5.
The charged and uncharged forms of carbonylcyanide phenylhydrazone uncouplers bind to phosphatidylcholine monolayers in a dose-dependent fashion, inducing changes in the interfacial potential of these model membranes. The interfacial potential change produced by the charged uncoupler is composed of a double-layer potential and an internal electrostatic potential (boundary and/or dipole). Changes in double-layer potential induced by the uncouplers in mitochondrial membranes can explain both the inhibition of oxygen consumption (QO2) caused by the uncouplers and the competition shown by succinate when mitochondria are respiring in the presence of rotenone. From these results and from dose-response curves of QO2 versus uncoupler concentrations, we conclude that 1 microM is an upper limit for free uncoupler concentration in the medium to avoid unwanted side effects during cell physiology studies that require total mitochondrial uncoupling.  相似文献   

6.
Summary Bilayer membranes were formed from decane, cholesterol, and three lipids isolated fromStaphylococcus aureus: positively charged lysyl phosphatidylglycerol (LysPG), negatively charged phosphatidylglycerol (PG), and neutral diglucosyldiglyceride (DiGluDiGly). The uncouplers of oxidative phosphorylation, 2,4-dinitrophenol (DNP) and 3-t-butyl,5-chloro,2-chloro,4-nitrosalicylanilide (S 13), increased the electrical conductance of all three differently charged bilayers. S 13 was found to be the most effective reagent of the known uncouplers in increasing conductance of the bilayers. The conductance induced by uncouplers was investigated as a function of pH and uncoupler concentration. The pH of maximum conductance for each uncoupling agent was dependent on both the uncoupler and the lipid; it was lower for each uncoupler in LysPG and higher in PG compared to DiGluDiGly bilayers. At a pH below the optimum for LysPG, the conductance of the positively charged membrane was 500 times and of the neutral one 10 times higher than that of the negatively charged bilayer at equal uncoupler concentration and pH. Above the pH optimum for DiGluDiGly, the conductance was approximately equal for the positive and neutral membranes, but was lower in PG bilayers. Conductance depended linearly on uncoupler concentration. The bilayer conductance induced by S 13 was entirely due to increased proton permeability in all three lipids. The findings are consistent with the role of uncouplers as carriers for protons across the hydrocarbon interior of lipid membranes. The differences in conductance of differently charged lipid bilayers at equal uncoupler concentration, as well as the change of pH optimum of conductance with lipid charge, can be explained in terms of an electrostatic energy contribution of the fixed lipid charges to the distribution of the uncoupler anion between the aqueous and the membrane phases.  相似文献   

7.
Uncoupling activity with flight-muscle mitochondria from house flies was measured for a series of weakly acidic uncouplers (substituted phenols) and compared with the protonophoric potency across lecithin liposomal membranes. The activity was linearly related to the protonophoric potency when such factors as the stability of anionic species in the membrane phase and the difference in the pH conditions of the extramembranous aqueous phase were taken into account. Relationships of the flight-muscle activity with activities measured previously with rat-liver mitochondria and spinach chloroplasts were linear. Our findings were further evidence for the shuttle-type mechanism of the uncoupling action of weakly acidic uncouplers.  相似文献   

8.
Uncoupling activity with rat liver mitochondria and protonophoric activity across the lecithin liposomal membranes were measured for a series of non-classical uncouplers related to the most potent uncoupler known until now, SF6847 (2,6-di-t-butyl-4-(2',2'-dicyanovinyl)phenol). The correlation between uncoupling and protonophoric activities for a number of uncouplers, both non-classical and classical (simply substituted phenols), was examined quantitatively. Correlation was excellent when such factors as the stability of anionic species in the membrane phase and the difference in the pH conditions of the extramembranous aqueous phase were taken into account. Carbonylcyanide m-chlorophenylhydrazone (CCCP) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), which are structurally different, were correlated in a way that resembled the correlation of phenolic compounds, so we think that the mode of action of weakly acidic uncouplers was the same regardless of the structural type. Our findings were evidence for the shuttle-type mechanism of uncoupling action.  相似文献   

9.
The protonophoric activity through liposomal membranes was measured and compared with the uncoupling activity with the oxidative phosphorylation of rat-liver mitochondria for 19 substituted phenols. Quantitative analyses of the protonophoric activity of the phenols in terms of physicochemical molecular parameters showed that the activity was mostly decided by two factors: the partition coefficient between the liposome and aqueous buffer phases and the acid dissociation constant. Correlation was excellent between protonophoric and uncoupling activities when the difference in the effect of acidity of phenols between liposomal and mitochondrial membranes was taken into account. The results were further evidence for the shuttle-type of mechanism of weakly acidic uncouplers based on the Mitchell chemiosmotic hypothesis.  相似文献   

10.
At low uncoupler concentrations the binding of carbonyl-cyanide-m-chlorophenyl-hydrazone to mitochondria was found to depend sensitively on the metabolic state of mitochondria. The binding data are consistent with the assumption that at low concentrations and pH 7.4 the uncoupler is bound mainly in anionic form to the inner mitochondrial membrane and that upon energization the inner membrane undergoes conformation change, exposes buried ionizable groups and hence acquires a negative net membrane charge. Deenergization of the inner membrane by a small amount of uncoupler removes the negative net membrane charge and consequently increases the apparent binding constants. Based upon the present results on uncoupler binding and previous observations on the physiological properties of alkylating uncouplers, a possible molecular mechanism involving electron carriers and coupling factors is suggested for coupling electron transport to phosphorylation.  相似文献   

11.
Nucleoside diphosphate kinase (NDPK/Nm23), responsible for intracellular di- and triphosphonucleoside homeostasis, plays multiple roles in cellular energetics, signaling, proliferation, differentiation and tumor invasion. The only human NDPK with a mitochondrial targeting sequence is NDPK-D, the NME4 gene product, which is a peripheral protein of mitochondrial membranes. Subfractionation of rat liver and HEK 293 cell mitochondria revealed that NDPK-D is essentially bound to the inner membrane. Surface plasmon resonance analysis of the interaction using recombinant NDPK-D and model liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin. Mutation of the central arginine (Arg-90) in a surface-exposed basic RRK motif unique to NDPK-D strongly reduced interaction with anionic phospholipids. Due to its symmetrical hexameric structure, NDPK-D was able to cross-link anionic phospholipid-containing liposomes, suggesting that NDPK-D could promote intermembrane contacts. Latency assays with isolated mitochondria and antibody binding to mitoplasts indicated a dual orientation for NDPK-D. In HeLa cells, stable expression of wild type but not of the R90D mutant led to membrane-bound enzyme in vivo. Respiration was significantly stimulated by the NDPK substrate TDP in mitochondria containing wild-type NDPK-D, but not in those expressing the R90D mutant, which is catalytically equally active. This indicates local ADP regeneration in the mitochondrial intermembrane space and a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on its membrane-bound state.  相似文献   

12.
《BBA》1987,891(3):293-299
Uncoupling activity with rat liver mitochondria and protonophoric activity across the lecithin liposomal membranes were measured for a series of non-classical uncouplers related to the most potent uncoupler known until now, SF6847 (2,6-di-t-butyl-4-(2′,2′-dicyanovinyl)phenol). The correlation between uncoupling and protonophoric activities for a number of uncouplers, both non-classical and classical (simply substituted phenols), was examined quantitatively. Correlation was excellent when such factors as the stability of anionic species in the membrane phase and the difference in the pH conditions of the extramembranous aqueous phase were taken into account. Carbonylcyanide m-chlorophenylhydrazone (CCCP) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), which are structurally different, were correlated in a way that resembled the correlation of phenolic compounds, so we think that the mode of action of weakly acidic uncouplers was the same regardless of the structural type. Our findings were evidence for the shuttle-type mechanism of uncoupling action.  相似文献   

13.
A cholestane spin probe was used to study the effect of uncouplers of oxidative phosphorylation (2,4-dinitrophenol, pentachlorophenol and dicumarol) on the degree of organization of phospholipids in hydrated multibilayers. Disruptive effects were observed—their magnitude depending on pH, time and the presence of cholesterol. A correlation between changes in probe organization and ion conductivity, with maximum effects at the pH corresponding to the pK of the uncoupler, could be demonstrated in the films containing cholesterol. Egg lecithin films containing no cholesterol were disordered maximally at pH 4.0 irrespective of the uncoupler used. The effect of uncouplers on the probe disorganization varied with time after exposure. These time effects indicated that relative movement of uncoupler, probe and lipid molecules occur to produce lipid organizations differing from those after initial exposure to uncoupler. The results show that even in a simple model system uncoupler effects may be complex, and suggest that changes in bilayer lipid organization parameters may play a role in uncoupling oxidative phosphorylation.  相似文献   

14.
Titration of State 4 rat-liver mitochondria at pH 7.2 with the uncoupler 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847) at various concentrations of mitochondria and using various substrates indicates that under optimal conditions less than 0.2 molecule of 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile per respiratory chain is sufficient to induce complete uncoupling. This result suggests that there is not a stoichiometric relationship between uncoupler molecules and cytochrome c oxidase, involved in oxidative phosphorylation, or between the former and phosphorylation assemblies. Experiments on the release by 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile of azide-inhibited respiration of State 3 mitochondria and titrations with 5-chloro-3-tert-butyl-2'-chloro-4'-nitrosalicylanilide (S13) of State 4 mitochondria at various mitochondrial concentrations confirm this conclusion.  相似文献   

15.
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H+ conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.  相似文献   

16.
The effects of the local anesthetic bupivacaine on the oxidative phosphorylation in rat liver mitochondria were examined. Bupivacaine caused a maximum of about 7-fold stimulation of state 4 respiration at about 3 mM, released oligomycin-inhibited state 3 respiration, and activated ATPase to a similar extent to that by the weakly acidic uncoupler SF 6847. These effects were greatly enhanced by the addition of certain hydrophobic anions such as 1-anilino-8-naphthalenesulfonate, tetraphenyl borate, and picrate. In the absence of these anions, bupivacaine did not increase the proton conductance in either energized or nonenergized mitochondrial membranes or in artificial bilayer lipid membranes and did not have any effect on the proton motive force. However, it greatly enhanced the proton conductivity of these membrane systems and collapsed the proton motive force in the presence of hydrophobic anions. The results of noise analysis of artificial lipid bilayer membranes indicated that an ion pair complex of bupivacaine with hydrophobic anions formed a leakage-type ion pathway. Thus it is concluded that bupivacaine acts as a decoupler in the absence of added hydrophobic anions but in cooperation with certain anions as an uncoupler of oxidative phosphorylation due to formation of a H(+)-specific pathway in the membranes.  相似文献   

17.
The formerly widely used broad-spectrum biocide triclosan (TCS) has now become a subject of special concern due to its accumulation in the environment and emerging diverse toxicity. Despite the common opinion that TCS is an uncoupler of oxidative phosphorylation in mitochondria, there have been so far no studies of protonophoric activity of this biocide on artificial bilayer lipid membranes (BLM). Yet only few works have indicated the relationship between TCS impacts on mitochondria and nerve cell functioning. Here, we for the first time report data on a high protonophoric activity of TCS on planar BLM. TCS proved to be a more effective protonophore on planar BLM, than classical uncouplers. Correlation between a strong depolarizing effect of TCS on bacterial membranes and its bactericidal action on Bacillus subtilis might imply substantial contribution of TCS protonophoric activity to its antimicrobial efficacy. Protonophoric activity of TCS, monitored by proton-dependent mitochondrial swelling, resulted in Ca2+ efflux from mitochondria. A comparison of TCS effects on molluscan neurons with those of conventional mitochondrial uncouplers allowed us to ascribe the TCS-induced neuronal depolarization and suppression of excitability to the consequences of mitochondrial deenergization. Also similar to the action of common uncouplers, TCS caused a pronounced increase in frequency of miniature end-plate potentials at neuromuscular junctions. Thus, the TCS-induced mitochondrial uncoupling could alter neuronal function through distortion of Ca2+ homeostasis.  相似文献   

18.
A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.  相似文献   

19.
A series of α-N-alkyl and α-N-aryl histidines was synthesized. Several of the more lipophilic derivatives were shown to be uncouplers of oxidative phosphorylation. A direct relationship was noted for the α-N-alkyl series between carbon chain length on the α-nitrogen of histidine, organic/water partition coefficient, efflux rate from liposomes, ability to lower electrical resistance of bimolecular lipid membranes, ability to increase respiration in coupled mitochondria, and ability to lower P/O ratios in coupled mitochondria. The aromatic derivative α-N-salicyl histidine was the best uncoupler in the series but was still not as effective an uncoupler as 2,4-dinitrophenol.  相似文献   

20.
H. Terada  K. Van Dam 《BBA》1975,387(3):507-518
Titration of State 4 rat-liver mitochondria at pH 7.2 with the uncoupler 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847) at various concentrations of mitochondria and using various substrates indicates that under optimal conditions less than 0.2 molecule of 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile per respiratory chain is sufficient to induce complete uncoupling. This result suggests that there is not a stoichiometric relationship between uncoupler molecules and cytochrome c oxidase, involved in oxidative phosphorylation, or between the former and phosphorylation assemblies.

Experiments on the release by 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile of azide-inhibited respiration of State 3 mitochondria and titrations with 5-chloro-3-tert-butyl-2′-chloro-4′-nitrosalicylanilide (S13) of State 4 mitochondria at various mitochondrial concentrations confirm this conclusion.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号