首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
将编码柯萨奇B3病毒(CVB3)衣壳蛋白VP1和VP2的基因,分别克隆到具有7.5k启动子的痘苗病毒表达载体pGJP5上;将CVB3衣壳蛋白全基因克隆到具有T7启动子的痘苗表达载体pTM1上,并筛先到相应的重组痘苗病毒VVP1、VVP2和VVP/4/2/3/1。VVP1和VVP2稳定表达产物为CVB3衣壳蛋白VP1和VP2,而VVP4/2/3/1为一无分泌性的多聚蛋白,且这三种表达产物均属无分泌性  相似文献   

3.
4.
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The role of the herpes simplex virus tegument protein VP22 is not yet known. Here we describe the characterization of a virus in which the entire VP22 open reading frame has been deleted. We show that VP22 is not essential for virus growth but that virus lacking VP22 (Delta22) displays a cell-specific replication defect in epithelial MDBK cells. Virus particles assembled in the absence of VP22 show few obvious differences to wild-type (WT) particles, except for a moderate reduction in glycoproteins gD and gB. In addition, the Delta22 virus exhibits a general delay in the initiation of virus protein synthesis, but this is not due to a glycoprotein-related defect in virus entry. Intriguingly, however, the absence of VP22 has an obvious effect on the intracellular level of the immediate-early (IE) protein ICP0. Moreover, following translocation from the nucleus to the cytoplasm, ICP0 is unable to localize to the characteristic cytoplasmic sites observed in a WT infection. We demonstrate that, in WT-infected cells, VP22 and ICP0 are concentrated in the same cytoplasmic sites. Furthermore, we show that, while ICP0 and ICP4 are components of WT extracellular virions, the altered localization of ICP0 in the cytoplasm of Delta22-infected cells correlates with an absence of both ICP0 and ICP4 from Delta22 virions. Hence, while a role has not yet been defined for virion IE proteins in virus infection, our results suggest that their incorporation is a specific event requiring the tegument protein VP22. This report provides the first direct evidence that VP22 influences virus assembly.  相似文献   

6.
Transactivation of a late herpes simplex virus promoter.   总被引:19,自引:3,他引:16  
  相似文献   

7.
痘苗病毒/T7RNA聚合酶这一瞬时表达系统由于具有很多优于其他表达系统的特点而被广泛地应用于表达外源蛋白.TB-Chen株轮状病毒的VP6 DNA编码片段插入到原核质粒pETL的噬菌体T7启动子和终止子之间,获得重组表达质粒pET-VP6.构建好的重组表达质粒pET-VP6通过脂质体转染到真核细胞MA104中,用携带噬...  相似文献   

8.
9.
10.
When vaccinia-virus-infected cells were labeled with radioactive phosphate in the absence of viral gene expression an additional phosphoprotein, containing phosphoserine, was found specifically associated with the ribosomes. The phosphoprotein was removed from the ribosomes following a 0.5 M KCl washing or after EDTA treatment. This additional phosphoprotein was found in infected cells after either a long (3-4 h) or a short (30 min) labeling period; it was detected when the infected cells were incubated in the presence or absence of an inhibitor of RNA or protein synthesis. This phosphoprotein originated from the phosphorylation of vaccinia virion structural protein VP11b (Mr 11,000) at a specific site since only a single major phosphopeptide was obtained after trypsin digestion. This phosphoprotein was also present in purified vaccinia virions labeled with radioactive phosphate. VP11b protein was phosphorylated in vitro by the protein kinase associated with the cores. When the reaction was carried out at an alkaline pH the phosphorylation in vitro occurred at different sites in the protein; at neutral pH the phosphorylation of VP11b was more specific and, as judged by tryptic peptide analysis, occurred mainly at the same site as in the phosphorylation in vivo. A role for the involvement of phosphoprotein VP11b in the establishment of the shut off of host protein synthesis by vaccinia virus is suggested.  相似文献   

11.
VP40 octamers are essential for Ebola virus replication   总被引:2,自引:0,他引:2       下载免费PDF全文
Matrix protein VP40 of Ebola virus is essential for virus assembly and budding. Monomeric VP40 can oligomerize in vitro into RNA binding octamers, and the crystal structure of octameric VP40 has revealed that residues Phe125 and Arg134 are the most important residues for the coordination of a short single-stranded RNA. Here we show that full-length wild-type VP40 octamers bind RNA upon HEK 293 cell expression. While the Phe125-to-Ala mutation resulted in reduced RNA binding, the Arg134-to-Ala mutation completely abolished RNA binding and thus octamer formation. The absence of octamer formation, however, does not affect virus-like particle (VLP) formation, as the VLPs generated from the expression of wild-type VP40 and mutated VP40 in HEK 293 cells showed similar morphology and abundance and no significant difference in size. These results strongly indicate that octameric VP40 is dispensable for VLP formation. The cellular localization of mutant VP40 was different from that of wild-type VP40. While wild-type VP40 was present in small patches predominantly at the plasma membrane, the octamer-negative mutants were found in larger aggregates at the periphery of the cell and in the perinuclear region. We next introduced the Arg134-to-Ala and/or the Phe125-to-Ala mutation into the Ebola virus genome. Recombinant wild-type virus and virus expressing the VP40 Phe125-to-Ala mutation were both rescued. In contrast, no recombinant virus expressing the VP40 Arg134-to-Ala mutation could be recovered. These results suggest that RNA binding of VP40 and therefore octamer formation are essential for the Ebola virus life cycle.  相似文献   

12.
RNA-binding proteins of bovine rotavirus.   总被引:14,自引:9,他引:14       下载免费PDF全文
  相似文献   

13.
We established a human cell line which was persistently infected (PI) by the normally cytolytic echovirus 6. All of the cultured PI cells contained genome-size viral RNA which was synthesized continuously and incorporated into virus particles. This steady-state infection has been maintained for more than 6 years. In contrast to RNA of wild-type echovirus 6, the viral RNA from PI cells was not lytic when transfected into uninfected, susceptible cells. The capsid polypeptides of the virus particles produced during lytic infections were compared with those of virus particles from PI cells. Wild-type virions contained five polypeptides with molecular masses of 31.5, 27, 25.8, 21.2, and 9.5 kilodaltons. Comparison of polypeptide profiles of virions and empty immature capsids along with peptide analyses by immunoblotting and partial proteolysis of isolated viral proteins identified the cleavage products of the 31.5-kilodalton polypeptide (VP0) as the two smaller polypeptides (VP2 and VP4). The virus particles produced by PI cells as well as cellular extracts of PI cells contained only the three largest proteins (VP0, VP1, and VP3), indicating that VP0 was not processed during persistent infection. The lack of VP2 and VP4 in the defective virus particles coincided with their inability to attach to uninfected, susceptible cells. The maintenance of the steady-state infection of echovirus 6 was not dependent upon the release of virus particles from PI cells.  相似文献   

14.
Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µg. The result showed ~95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro.  相似文献   

15.
VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus 1 (HSV-1) tegument. In the present study we show VP22 is required for optimal protein synthesis at late times in infection. Specifically, in the absence of VP22, viral proteins accumulated to wild-type levels until ~6 h postinfection. At that time, ongoing synthesis of most viral proteins dramatically decreased in the absence of VP22, whereas protein stability was not affected. Of the individual proteins we assayed, VP22 was required for optimal synthesis of the late viral proteins gE and gD and the immediate-early protein ICP0 but did not have discernible effects on accumulation of the immediate-early proteins ICP4 or ICP27. In addition, we found VP22 is required for the accumulation of a subset of mRNAs to wild-type levels at early, but not late, times in infection. Specifically, the presence of VP22 enhanced the accumulation of gE and gD mRNAs until ~9 h postinfection, but it had no discernible effect at later times in infection. Also, VP22 did not significantly affect ICP0 mRNA at any time in infection. Thus, the protein synthesis and mRNA phenotypes observed with the UL49-null virus are separable with regard to both timing during infection and the genes affected and suggest separate roles for VP22 in enhancing the accumulation of viral proteins and mRNAs. Finally, we show that VP22's effects on protein synthesis and mRNA accumulation occur independently of mutations in genes encoding the VP22-interacting partners VP16 and vhs.  相似文献   

16.
H Wang  J Wu  X Liu  H He  F Ding  H Yang  L Cheng  W Liu  J Zhong  Y Dai  G Li  C He  L Yu  J Li 《PloS one》2012,7(8):e42356

Background

Although it is known that RNA interference (RNAi) targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV), it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge.

Principal Finding

Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2), VP3 (RNAi-VP3), or VP4 (RNAi-VP4) of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h.

Conclusion

RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.  相似文献   

17.
Polyoma virus has three late mRNA''s: one for each virion protein.   总被引:18,自引:13,他引:5       下载免费PDF全文
Polyoma virus mRNA, isolated from the cytoplasm of 3T6 cells late after infection and purified by hybridization to HpaII fragment 3 of polyoma virus DNA, was separated on 50% formamide-containing sucrose density gradients, and the fractionated RNA was recovered and translated in vitro. Analysis of the cell-free products showed that the minor virion protein VP3 was synthesized from an mRNA sedimenting at approximately 18S betweeen the 19S VP2 mRN and the 16S VP1 mRNA. Other experiments showed that the VP2 and VP3 can be labeled with formyl methionine from initiator tRNA. We conclude that there are three late polyoma virus mRNA's, each directing the synthesis of only one viral capsid protein.  相似文献   

18.
Herpes simplex virus (HSV) immediate-early (IE) gene expression is initiated via the recruitment of the structural protein VP16 onto specific sites upstream of each IE gene promoter in a multicomponent complex (TRF.C) that also includes the cellular proteins Oct-1 and HCF. In vitro results have shown that HCF binds directly to VP16 and stabilizes TRF.C. Results from transfection assays have also indicated that HCF is involved in the nuclear import of VP16. However, there have been no reports on the role or the fate of HCF during HSV type 1 (HSV-1) infection. Here we show that the intracellular distribution of HCF is dramatically altered during HSV-1 infection and that the protein interacts with and colocalizes with VP16. Moreover, viral protein synthesis and replication were significantly reduced after infection of a BHK-21-derived temperature-sensitive cell line (tsBN67) which contains a mutant HCF unable to associate with VP16 at the nonpermissive temperature. Intracellular distribution of HCF and of newly synthesized VP16 in tsBN67-infected cells was similar to that observed in Vero cells, suggesting that late in infection the trafficking of both proteins was not dependent on their association. We constructed a stable cell line (tsBN67r) in which the temperature-sensitive phenotype was rescued by using an epitope-tagged wild-type HCF. In HSV-1-infected tsBN67r cells at the nonpermissive temperature, direct binding of HCF to VP16 was observed, but virus protein synthesis and replication were not restored to levels observed at the permissive temperature or in wild-type BHK cells. Together these results indicate that the factors involved in compartmentalization of VP16 alter during infection and that late in infection, VP16 and HCF may have additional roles reflected in their colocalization in replication compartments.  相似文献   

19.
In order to study the importance of VP4 in picornavirus replication and translation, we replaced the hepatitis A virus (HAV) VP4 with the poliovirus (PV1) VP4. Using a modification of oligonucleotide site directed mutagenesis and the polymerase chain reaction (PCR), we created a subgenomic cDNA chimera of hepatitis A virus in which the precise sequences coding for HAV VP4 capsid protein were replaced by the sequences coding for the poliovirus VP4 capsid protein. The method involved the use of PCR primers corresponding to the 3' and 5' ends of the poliovirus VP4 sequence and that had HAV VP4 3' and 5' flanking sequences on their 5'ends. Single stranded DNA of 240 and 242 nt containing the 204 nt coding for the complete poliovirus VP4 were produced by using a limiting amount of one of the primers in a PCR reaction. These single stranded PCR products were used like mutagenic oligonucleotides on a single stranded phagemid containing the first 2070 bases of the HAV genome. Using this technique, we precisely replaced the HAV VP4 gene by the poliovirus VP4 gene as determined by DNA sequencing. The cDNA was transcribed into RNA and translated in vitro. The resulting protein could be precipitated by antibody to poliovirus VP4 but not to HAV VP4.  相似文献   

20.
We have identified a region related to the protease domain of bacterial and organelle ATP-dependent Lon proteases in virus protein 4 (VP4) of infectious bursal disease virus strain P2 (IBDVP2), a two-segmented double-stranded RNA virus. Unlike canonical Lons, IBDVP2 VP4 possesses a proteinase activity though it lacks an ATPase domain. Ser652 and Lys692 of IBDVP2 VP4 are conserved across the Lon/VP4 family and are essential for catalysis. Lys692 has the properties of a general base, increasing the nucleophilicity of Ser652; a similar catalytic dyad may function in the other Lons. VP4 can cleave in trans and is responsible for the interdomain proteolytic autoprocessing of the pVP2- VP4-VP3 polyprotein encoded by RNA segment A. VP2, which is later derived from pVP2, and VP3 are major capsid proteins of birnaviruses. Results of the characterization of a range of the IBDVP2 VP4 mutants in cell cultures implicate VP4 in trans-activation of the synthesis of VP1, putative RNA-dependent RNA polymerase encoded by RNA segment B, and in cleavage rate-dependent control of process(es) crucial for the generation of the infectious virus progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号