首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dipicolinic acid, a known inhibitor of an enzyme (dihydrodipicolinic acid reductase) in the maize (Zea mays L.) lysine biosynthetic pathway, inhibits the growth of maize suspension and callus cultures. Inhibited cultures contain somewhat lower free lysine levels, but the inhibition of suspension culture growth was not reversible with simultaneous addition of L-lysine to the culture medium. It is concluded that dipicolinic acid does not act solely as an analog blocking lysine production. Dipicolinic acid thus appears to be unsuitable as a selection for maize tissue culture mutants with lysine overproduction.Abbreviations FW fresh weight - I50 inhibitor concentration at which cell growth is inhibited by 50% - MS Murashige and Skoog (1962) culture medium - ZM Black Mexican Zea mays suspension culture of Chourey and Zurawski (1981)  相似文献   

2.
A cDNA clone was isolated from a maize (Zea mays L. cv W64A×W183E) scutellum λgt11 library using maize leaf NADH:nitrate reductase Zmnr1 cDNA clone as a hybridization probe; it was designated Zmnr1S. Zmnr1S was shown to be an NADH:nitrate reductase clone by nucleotide sequencing and comparison of its deduced amino acid sequence to Zmnr1. Zmnr1S, which is 1.8 kilobases in length and contains the code for both the cytochrome b and flavin adenine dinucleotide domains of nitrate reductase, was cloned into the EcoRI site of the Escherichia coli expression vector pET5b and expressed. The cell lysate contained NADH:cytochrome c reductase activity, which is a characteristic partial activity of NADH:nitrate reductase dependent on the cytochrome b and flavin adenine dinucleotide domains. Recombinant cytochrome c reductase was purified by immunoaffinity chromatography on monoclonal antibody Zm2(69) Sepharose. The purified cytochrome c reductase, which had a major size of 43 kilodaltons, was inhibited by polyclonal antibodies for maize leaf NADH:nitrate reductase and bound these antibodies when blotted to nitrocellulose. Ultraviolet and visible spectra of oxidized and NADH-reduced recombinant cytochrome c reductase were nearly identical with those of maize leaf NADH:nitrate reductase. These two enzyme forms also had very similar kinetic properties with respect to NADH-dependent cytochrome c and ferricyanide reduction.  相似文献   

3.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibrium-ordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.  相似文献   

4.
The rat liver microsomal enzyme that catalyzes NADPH-dependent reduction of 3-ketosteroid intermediates of cholesterol biosynthesis from lanosterol has been solubilized. Although the specific activity has been enhanced only modestly, 24-fold, the solubilized and partially purified reductase can be obtained free of 4-methyl sterol oxidase (also NAD(P)H dependent) and 4α-steroidoic acid decarboxylase (NAD dependent) that are the other two constitutive enzymes of microsomal sterol 4-demethylation. In addition, the isolated protein can be incorporated into artificial phospholipid membranes with retention of activity. Thus, the partially purified 3-ketosteroid reductase is suitable for reconstitution with other enzymes and electron carriers to achieve the 10-step oxidative removal of the 4-gem-dimethyl group of sterols. Both the solubilized and microsomalbound enzyme are essentially inactive with NADH. Also, similar sterol substrate specificities with 4α-monomethyl- and 4,4-dimethyl-3-ketosteroids, pH optima, and other properties of microsomal-bound and solubilized 3-ketoreductase are observed. As observed for other microsomal enzymes the Km of the solubilized enzyme is significantly lower than that of the membrane-bound enzyme. Membrane-bound 3-ketosteroid reductase is stimulated two- to- threefold by cytosolic Z protein (fatty acid binding protein), but stimulatory activity is lost after solubilization of the microsomal enzyme. Stimulation could not be restored by incorporating the partially purified reductase into an artificial membrane. Stimulation can be reversed by titration of Z-protein with either fatty acids or anti-Z-protein immunoglobulin. Thus, Z protein may modulate several microsomal enzymic activities of sterol biosynthesis in concert by exhibiting affinities for the membrane as well as low-molecular-weight cofactors, substrates, and metabolic effectors.  相似文献   

5.
Antiserum was prepared against nitrate reductase (EC 1.6.6.1) purified to homogeneity from Chlorella vulgaris Beijerinck. Both crude antiserum and anti-nitrate reductase antibodies prepared from it were used as re-agents to study the synthesis of nitrate reductase. Cell extracts from cultures which were grown with ammonia salts as the sole source of nitrogen contained almost no active enzyme. These extracts did contain material which binds to antibody and is thus immunologically related to purified nitrate reductase. The presence of this cross reacting material in cell extracts was detected by the ability of these extracts to (a) lower the titer of antisera; (b) form a biphasic precipitin curve with purified antibody; and (c) increase the peak height of a standard amount of purified nitrate reductase in rocket immunoelectrophoresis assay. These results suggest that ammonia-grown cells contain nitrate reductase precursor protein.  相似文献   

6.
NADPH-cytochrome P-450 oxidoreductase (EC 1.6.2.4) was purified from the microsomal fraction of tobacco (Nicotiana tabacum) BY2 cells by chromatography on two anion-exchange columns and 2′,5′ ADP-Sepharose 4B column. The purified enzyme showed a single protein band with a molecular weight of 79 kDa on SDS-PAGE and exhibited a typical flavoprotein redox spectrum, indicating the presence of an equimolar quantity of FAD and FMN. This enzyme followed Michaelis-Menten Kinetics with Km values of 24 μM for NADPH and 16 μM for cytochrome c. An in vitro reconstituted system of the purified reductase with a partially purified tobacco cytochrome P-450 preparation showed the cinnamic acid 4-hydroxylase activity at the rate of 14 pmol min −1nmol−1 P-450 protein and with a purified rabbit P-4502C14 catalyzed N-demethylation of aminopyrine at the rate of 6 pmol min−1 lnmo−1 P-450 protein. Polyclonal antibodies raised against the purified reductase reacted with tobacco reductase but not with yeast reductase on Western blot analysis. Anti-yeast reductase antibodies did not react with the tobacco reductase. This result indicate that the tobacco reductase was immunochemically different from the yeast reductase. The anti-tobacco reductase antibodies totally inhibited the tobacco reductase activity, but not the yeast reductase. Also, Western blot analyses using the anti-tobacco reductase antibodies revealed that leaves, roots and shoots of Nicotiana tabacum plants contained an equal amount of the reductase protein. From these results, it was suggested that there are different antibody binding sites, which certainly participate in enzyme activity, between tobacco and yeast reductase.  相似文献   

7.
Wu MX  Wedding RT 《Plant physiology》1992,100(1):382-387
Phosphoenolpyruvate carboxylase (PEPC) purified from maize (Zea mays L.) leaves associates with maize leaf chloroplast membrane in vitro. The binding of PEPC to the membrane results in enzyme inactivation. A protein isolated from a maize leaf chloroplast membrane preparation inactivated PEPC. Treatment with membrane preparation or with partially purified inactivating protein accelerates PEPC inactivation at low temperature (4°C). Interaction of PEPC with chloroplast membrane or inactivating protein may inactivate the enzyme by influencing dissociation of the enzyme active tetramer.  相似文献   

8.
A long chain acyl-CoA reductase of Clostridium butyricum has been partially purified from the 100,000g supernatant fraction of cell extracts. The enzyme reduces acyl-CoA derivatives to aldehydes in the presence of NADH. It is stable in dithiothreitol-containing buffers at 4 °C, heat-labile, and sensitive to sulfhydryl reagents. It is active with palmitoyl-CoA, stearoyl-CoA, oleoyl-CoA, and myristoyl-CoA. Its apparent molecular weight on Sephadex G-100 column chromatography is 50,000. In crude extracts and at low purification, an NADPH-dependent reduction of palmitaldehyde to cetyl alcohol was also observed. An acyl-CoA hydrolase was also observed in crude extracts.  相似文献   

9.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

10.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

11.
Acetohydroxyacid synthase has been purified from maize (Zea mays, var Black Mexican Sweet) suspension culture cells 49-fold by a combination of ion exchange chromatography, gel filtration, and hydroxyapatite chromatography. Use of the nondenaturing, zwitterionic detergent 3-([3-cholamidopropyl]dimethyl-ammonio)-1-propanesulfonate was necessary to dissociate the enzyme from the heterogeneous, high molecular weight aggregates in which it appears to reside in vitro. The solubilized maize acetohydroxyacid synthase had a relative molecular mass of 440,000. The purified enzyme was highly unstable. Acetohydroxyacid synthase activities in crude extracts of excised maize leaves and suspension cultured cells were reduced 85 and 58%, respectively, by incubation of the tissue with 100 micromolar (excised leaves) and 5 micromolar (suspension cultures) of the imidazolinone imazapyr prior to enzyme extraction, suggesting that the inhibitor binds tightly to the enzyme in vivo. Binding of imazapyr to maize acetohydroxyacid synthase could also be demonstrated in vitro. Evidence is presented which suggests that the interaction between imazapyr and the enzyme is reversible. Imazapyr also exhibited slow-binding properties when incubated with maize cell acetohydroxyacid synthase in extended time course experiments. Initial and final Ki values for the inhibition were 15 and 0.9 micromolar, respectively. The results suggest that imazapyr is a slow, tight-binding inhibitor of acetohydroxyacid synthase.  相似文献   

12.
Lipoxygenase activities in ungerminated and germinating barley grains were found to be associated exclusively with the embryos. A lipoxygenase was extracted from ungerminated embryos and partially purified by fractional precipitation with ammonium sulfate and gel-filtration. Both the crude extracts and the purified preparation appeared to contain only a fatty acid type lipoxygenase which mainly converted linolele acid to 9-hydroperoxy, trans-10, cis-12-octadecadienoic acid. The purified enzyme was inhibited by its own products, hydroperoxides, but not by 1 mM cyanide, EDTA, Hg2+ or Cu2+.  相似文献   

13.
Phosphoenolpyruvate carboxylase has been purified to homogeneity from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. The ratio of specific activities in crude extracts and the purified enzyme suggests that the enzyme is a major soluble protein in the tissue. The enzyme has a sedimentation coefficient (s20,w) of 12.3S and a molecular weight, determined by sedimentation equilibrium, of 400,000 daltons. Dissociation of the enzyme and electrophoresis on dodecyl sulfate polyacrylamide gels yields a single stained band which corresponds to a subunit weight of 99,000 daltons. Thus it appears that the native enzyme is composed of four identical or similar polypeptide chains.  相似文献   

14.
Dehydroascorbate reductase was detected in the leaves of several plants and has been partially purified from spinach leaves. The enzyme has a MW of ca 25 000, a pH optimum of 7.5, a Km for glutathione (GSH) of 4.43 ± 0.4 mM and a Km for dehydroascorbate of 0.34 ± 0.05 mM. High concentrations of dehydroascorbate inhibit the enzyme. Cysteine cannot replace GSH as a donor. The purified dehydroascorbate reductase is extremely unstable and also inhibited by compounds which react with thiol groups. Dehydroascorbate does not protect the enzyme against such inhibition. GSH reduces dehydroascorbate non-enzymically at alkaline pH values.  相似文献   

15.
Previously, we have proposed that bovine adrenocortical mitochondrial adrenodoxin reductase may possess a domain structure, based upon the generation of two major peptide fragments from limited tryptic proteolysis. In the present study, kinetic characterization of the NADPH-dependent ferricyanide reductase activity of the partially proteolyzed enzyme demonstrates that Km(NADPH) increases (from 1.2 μM to 2.7 μM), whereas 1 Vmax remains unaltered at 2100 min−1 The two proteolytic fragments have been purified to homogeneity by reverse-phase HPLC, and amino acid sequence analysis unambiguously demonstrates that the 30.6 kDa fragment corresponds to the amino terminal portion of the intact protein, whereas the 22.8 kDa fragment is derived from the carboxyl terminus of the reductase. Trypsin cleavage occurs at either Arg-264 or Arg-265. Covalent crosslinking experiments using a water-soluble carbodiimide show that adrenodoxin crosslinks exclusively to the 30.6 kDa fragment, thus implicating the N-terminal region of adrenodoxin reductase in binding to the iron-sulfur protein. Our inability to detect covalent carbohydrate on either intact or proteolyzed adrenodoxin reductase prompted a re-examination of the previously reported requirement of an oligosaccharide moiety for efficient electron transfer from the reductase to adrenodoxin. Treatment of adrenodoxin reductase with a highly purified preparation of neuraminidase demonstrates that neither the adrenodoxin-independent ferric yanide reductase activity nor the adrenodoxin-dependent cytochrome c reductase activity of the enzyme is affected by neuraminidase treatment.  相似文献   

16.
《Phytochemistry》1986,25(7):1537-1543
The pyruvate, phosphate dikinase activity (PPD, EC 2.7.9.1) associated with crude extracts of leaf tissue of some C3 and C4 plants was determined by phosphoenolpyruvate plus PPi-dependent phosphorylation of AMP. The PPD activity of all C4 plants examined was > 15 nmol/mg protein/min. Several factors contributed to the underestimation of PPD activity in crude extracts of at least some species. Significant PPD activity (> 0.15 nmol/mg protein/min) was not detected in the majority of C3 species but several C3 species and the two CAM species studied exhibited activity in the range 0.4–4 nmol/mg protein/min while the C3 species Avena sativa showed activity up to 8 nmol/mg protein/min. The oat leaf enzyme was partially purified; it exhibited properties similar to those of partially purified PPD from maize. Leaf extracts of the orchids Cymbidium canaliculatum and C. madidum contained high levels of PPD activity similar to the majority of C4 plants. PPD activity has also been shown in other previously unstudied species.  相似文献   

17.
Ketose reductase activity in developing maize endosperm   总被引:5,自引:5,他引:0  
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely reversible. In maize endosperm, 15 days after pollination, ketose reductase activity was of the same order of magnitude as sucrose synthase activity, which produces fructose during sucrose degradation. Other enzymes of hexose metabolism detected in maize endosperm were present in activities of only 1 to 3% of the sucrose synthase activity. CaCl2, MgCl2, and MnCl2 stimulated ketose reductase activity 7-, 6-, and 2-fold, respectively, but had little effect on NAD-dependent polyol dehydrogenation (the reverse reaction). The pH optimums for ketose reductase and polyol dehydrogenase reactions were 6.0 and 9.0, respectively. Km values were 136 millimolar fructose and 8.4 millimolar sorbitol. The molecular mass of ketose reductase was estimated to be 78 kilodaltons by gel filtration. It is postulated that ketose reductase may function to metabolize some of the fructose produced during sucrose degradation in maize endosperm, but the metabolic fate of sorbitol produced by this reaction is not known.  相似文献   

18.
Here we present a highly sensitive and simple high-performance liquid chromatography (HPLC) method that enables specific quantification of glucuronokinase activity in partially purified extracts from pollen of Lilium longiflorum without radioactive labeled substrates. This assay uses a recombinant UDP-sugar pyrophosphorylase with broad substrate specificity from Pisum sativum (PsUSP) or Arabidopsis thaliana (AtUSP) as a coupling enzyme. Glucuronokinase was partially purified on a DEAE-sepharose column. Kinase activity was measured by a nonradioactive coupled enzyme assay in which glucuronic acid-1-phosphate, produced in this reaction, is used by UDP-sugar pyrophosphorylase and further converted to UDP-glucuronic acid. This UDP-sugar, as well as different by-products, is detected by HPLC with either a strong anion exchange column or a reversed phase C18 column at a wavelength of 260 nm. This assay is adaptive to different kinases and sugars because of the broad substrate specificity of USP. The HPLC method is highly sensitive and allows measurement of kinase activity in the range of pmol min-1. Furthermore, it can be used for determination of pure kinases as well as crude or partially purified enzyme solutions without any interfering background from ATPases or NADH oxidizing enzymes, known to cause trouble in different photometric assays.  相似文献   

19.
Hydroperoxide isomerase: a new enzyme of lipid metabolism   总被引:16,自引:7,他引:9       下载免费PDF全文
An enzyme has been isolated from flaxseed (Linum usitatissimum) which utilizes the product of lipoxidase for its substrate. The enzyme, termed hydroperoxide isomerase, converts the conjugated diene hydroperoxide of linoleic acid to the corresponding monoenoic ketohydroxy fatty acid. The structure of the latter has been determined by ultraviolet, infrared, and nuclear magnetic resonance spectroscopy; periodate and permangate oxidation; gas chromatography; and thin layer chromatography. Hydroperoxide isomerase activity has also been demonstrated in crude extracts from barley (Hordeum vulgare), wheat germ (Triticum aestivum), mung beans (Phaseolus aureus), and corn (Zea mays) and from partially purified extracts of soybean (Glycine max).  相似文献   

20.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号