首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epinephrine, norepinephrine, and corticosterone responses to hypoglycemia are impaired in diabetic rats. Recurrent hypoglycemia further diminishes epinephrine responses. This study examined the sympathoadrenal system and hypothalamo-pituitary-adrenal axis for molecular adaptations underlying these defects. Groups were normal (N) and diabetic (D) rats and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (D-hypo) or hyperinsulinemic hyperglycemia (D-hyper). D-hypo and D-hyper rats differentiated effects of hypoglycemia and hyperinsulinemia. Adrenal tyrosine hydroxylase (TH) mRNA was reduced (P < 0.05 vs. N) 25% in all diabetic groups. Remarkably, mRNA for phenylethanolamine N-methyltransferase (PNMT), which converts norepinephrine to epinephrine, was reduced (P < 0.05 vs. all) 40% only in D-hypo rats. Paradoxically, dopamine beta-hydroxylase mRNA was elevated (P < 0.05 vs. D, D-hyper) in D-hypo rats. Hippocampal mineralocorticoid receptor (MR) mRNA was increased (P < 0.05 vs. N) in all diabetic groups. Hippocampal glucocorticoid receptor (GR), hypothalamic paraventricular nucleus (PVN) GR and corticotropin-releasing hormone (CRH), and pituitary GR and proopiomelanocortin (POMC) mRNA levels did not differ. We conclude that blunted corticosterone responses to hypoglycemia in diabetic rats are not due to altered basal expression of GR, CRH, and POMC in the hippocampus, PVN, and pituitary. The corticosterone defect also does not appear to be due to increased hippocampal MR, since we have reported normalized corticosterone responses in D-hypo and D-hyper rats. Furthermore, impaired epinephrine counterregulation in diabetes is associated with reduced adrenal TH mRNA, whereas the additional epinephrine defect after recurrent hypoglycemia is associated with decreases in both TH and PNMT mRNA.  相似文献   

2.
Previously we reported that the heart norepinephrine concentration was markedly increased in diabetic rats. To further study the relationship between a disturbance in the autonomic nervous system and catecholamine metabolism in diabetes mellitus, the plasma catecholamine response to stress and catecholamine concentration of heart and adrenals were measured. Wistar male rats were made diabetic by streptozotocin and kept for 13 weeks. A silicon catheter was placed in the superior V. cava 1 week prior to the experiment. Insulin was injected subcutaneously for 3 days once daily. After an overnight fast and without anesthesia, 1 ml of blood, a control sample, was obtained and then the animals were exsanguinated. The blood was mixed with 1 mM EGTA at a final concentration and centrifuged. The tissue was homogenized with 0.4 N perchloric acid containing 1 mM EGTA and centrifuged at 10,000 x g for 20 minutes. Catecholamines were determined by high performance liquid chromatography. Normal rats responded to blood withdrawal stress, and plasma catecholamines were markedly increased, but almost no increase or an actual decrease was observed in diabetic rats. These abnormal responses were improved by insulin treatment. Heart norepinephrine was increased significantly in the diabetic rats compared with the control rats and was reduced significantly by insulin injections. Adrenal epinephrine was also significantly increased in the diabetic rats compared with the control rats, but was not significantly reduced by insulin. These result suggest a possible disturbance of catecholamine secretion in the diabetic rats.  相似文献   

3.
The brain stems (BS) of streptozotocin (STZ)-diabetic rats were studied to see the changes in neurotransmitter content and their receptor regulation. The norepinephrine (NE) content determined in the diabetic brain stems did not show an increase, while epinephrine (EPI) content increased significantly compared with control. The NE to EPI turnover showed a significant increase. The alpha2 adrenergic receptor kinetics revealed that the receptor affinity was significantly reduced during diabetes. In insulin treated rats the NE content decreased while EPI content remained increased as in the diabetic state. Insulin treatment increased the Bmax for alpha2 adrenergic receptors significantly while the increase in Kd reversed to normal. Unlabelled clonidine inhibited [3H]NE binding in BS of control diabetic and insulin treated diabetic rats showed that alpha2 adrenergic receptors consisted of two populations of binding sites with Hill slopes significantly away from unity. In diabetic animals the ligand bound weaker to the low affinity site than in controls. Insulin treatment reversed this alteration to control levels. The displacement analysis using (-)-epinephrine against [3H]yohimbine in control and diabetic animals revealed two populations of receptor affinity states. In control animals, when GTP analogue added with epinephrine, the curve fitted for a single affinity model; but in the diabetic BS this effect was not observed. In both the diabetic and control BS the effects of monovalent cations on affinity alterations were intact. Our data thus show that alpha2 adrenergic receptors have a reduced affinity due to an altered post receptor affinity regulation The serotonin (5-HT) content in the brain stem increased. Its precursor (5-hydroxy) tryptophan (5-HTP) showed an increase and its breakdown metabolite (5-hydroxy) indoleacetic acid (5-HIAA) showed a significant decrease. This showed that in serotonergic nerves there is a disturbance in both synthetic and breakdown pathways which lead to an increased 5-HT. The high affinity serotonin receptor numbers remained unaltered with a decrease in the receptor affinity. The insulin treatment reversed these altered serotonergic receptor kinetic parameters to control level. Thus our study shows a decreased serotonergic receptor function. These changes in adrenergic and serotonergic receptor function were suggested to be important in insulin function during STZ diabetes.  相似文献   

4.
It has been suggested that the increased activity of the sympathetic nervous system and the resultant increase in the tissue catecholamine levels contribute to the pathogenesis of diabetes. In this study we evaluated the effect of clonidine, a central adrenergic agonist that decreases sympathetic tone, on the serum levels of glucose, insulin, glucagon and norepinephrine and on the hepatic glycogen content in normal and streptozotocin-diabetic rats. The animals were treated with clonidine 25 micrograms/kg/day interperitoneally for 3 weeks to suppress the central adrenergic impulses. Clonidine treatment significantly increased the weight gain, but did not affect plasma glucose, insulin, glucagon and norepinephrine in the diabetic animals. Pancreatic insulin and liver glycogen contents were significantly higher in the clonidine-treated than in the untreated diabetic rats. However, clonidine did not affect pancreatic insulin and liver glycogen content of nondiabetic animals. The intravenous administration of glucagon increased plasma glucose in the clonidine-treated, but not in the saline-treated diabetic rats. Insulin-induced hypoglycemia significantly enhanced glucagon release in clonidine-treated but not in saline-treated diabetic rats. We conclude that the suppression of central adrenergic activity may ameliorate the effects of insulin insufficiency on pancreatic hormone secretion and hepatic glycogen content.  相似文献   

5.
Diabetes mellitus (DM) is associated with increased risk of impaired cognitive function. Diabetic neuropathy is one of the most common and important complications of DM. Estrogens prevent neuronal loss in experimental models of neurodegeneration and accelerate nerve regeneration. Aromatase catalyzes the conversion of androgens to estrogens and expressed in a variety of tissues including neurons. Although insulin is known to regulate the activity of aromatase there is no study about the effects of diabetes on this enzyme. Present study was designed to investigate the effects of experimental diabetes on aromatase expression in nervous system. Gender-based differences were also investigated. Rats were injected with streptozotocin to induce diabetes. At the end of 4 and 12 weeks sciatic nerve and hippocampus homogenates were prepared and evaluated for aromatase proteins. Aromatase expressions in sciatic nerves of both genders were decreased in 4 weeks of diabetes, but in 12 weeks the enzyme levels were increased in females and reached to control levels in male animals. Aromatase levels were not altered in hippocampus at 4 weeks but increased at 12 weeks in female diabetic rats. No significant differences were observed at enzyme levels of hippocampus in male diabetic rats. Insulin therapy prevented all diabetes-induced changes. In conclusion, these results indicated for the first time that, DM altered the expression of aromatase both in central and peripheral nervous systems. Peripheral nervous system is more vulnerable to damage than central nervous system in diabetes. These effects of diabetes differ with gender and compensatory neuroprotective mechanisms are more efficient in female rats.  相似文献   

6.
There is some controversy concerning a possible effect of diabetes mellitus on the sympathetic nervous system in humans with spontaneous diabetes mellitus and in animals with experimental diabetes mellitus. In this study we compared the tissue norepinephrine (NE) concentration of normal and diabetic Chinese hamsters in the untreated state and after treatment with insulin. Diabetes resulted in a 128% increase in the NE concentration of the kidney in female but not male hamsters. The NE concentration was increased in the liver (133%) and in the cerebral cortex (118%) of both male and female hamsters. There was no significant increase in the NE concentration of hypothalamus, acinar pancreas, pancreatic islets, or heart of diabetic hamsters. Three days of insulin therapy reduced the elevated NE concentration in kidney, liver and cerebral cortex of diabetic hamsters to the levels found in normal hamsters. However, insulin therapy of normal hamsters did not reduce the tissue NE concentration of the kidney, liver, and cerebral cortex below the normal levels found in these animals. Insulin therapy reduced the hypothalamic concentration of NE in both diabetic and normal hamsters. The increase in kidney NE concentration in female diabetic hamsters was not due to a reduction in renal size, for the kidneys of both female and male diabetic hamsters were larger than those of normal hamsters. When synthesis of NE was inhibited with alpha-methyltyrosine, there was a comparable rate of fall in the tissue NE concentration in the four experimental groups, suggesting that the increased tissue NE concentration in the tissues of diabetic hamsters was not due to a decreased rate of disappearance of this compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Even if it is well established that epinephrine is a hormone originating from the adrenal medullae, the reappearance of circulating epinephrine has been reported in rats a few days after adrenodemedullation. To verify if the extra-adrenal tissue responsible for this epinephrine production can be stimulated, sham-operated or adrenodemedullated rats, either trained or kept sedentary, were submitted to an acute exercise stimulation test. Blood sampling was done before and after the test in precannulated rats for the determination of plasma epinephrine, norepinephrine, and corticosterone levels. Basal epinephrine levels were significantly reduced in trained and sedentary adrenodemedullated rats compared with their sham-operated counterparts. In response to exercise, there was no significant rise in epinephrine levels in both groups of adrenodemedullated rats. The norepinephrine levels in the basal state and in response to exercise were not altered by adrenodemedullation nor by physical conditioning. Basal corticosterone levels were similar between adrenodemedullated and sham-operated animals, either trained or kept sedentary. In response to exercise, corticosterone levels increased significantly in each group of rats but to a lesser extent in both groups of adrenodemedullated animals. These data indicate that the extra-adrenal epinephrine secretion that develops in the absence of adrenal medullae is not influenced by acute exercise nor by physical training.  相似文献   

8.
Hyperglycemia of diabetes has been implicated in increased tissue oxidative stress, with consequent development of secondary complications. Thus, stabilizing glucose levels near normal levels is of utmost importance. Because diet influences glycemic control, this study investigated whether a low-carbohydrate (5.5%) diet confers beneficial effects on the oxidative status of the heart, kidney, and liver in diabetes. Male and female normal and diabetic rats were fed standard chow (63% carbohydrates) or low-carbohydrate diet for 30 days. Elevated glucose, HbA(1c), and alanine and aspartate aminotransferases in diabetic animals were reduced or normalized by the low-carbohydrate diet. While diabetes increased cardiac activities of glutathione peroxidase and catalase, low-carbohydrate diet normalized cardiac glutathione peroxidase activity in diabetic animals, and reduced catalase activity in females. Diabetic rats fed low-carbohydrate diet had altered activities of renal glutathione reductase and superoxide dismutase, but increased renal glutathione peroxidase activity in diabetic animals was not corrected by the test diet. In the liver, diabetes was associated with a decrease in catalase activity and glutathione levels and an increase in glutathione peroxidase and gamma-glutamyltranspeptidase activities. Decreased hepatic glutathione peroxidase activity and lipid peroxidation were noted in diet-treated diabetic rats. Overall, the low-carbohydrate diet helped stabilize hyperglycemia and did not produce overtly negative effects in tissues of normal or diabetic rats.  相似文献   

9.
10.
In order to determine whether atrial natriuretic hormone (ANH) secretion is altered in diabetic patients with autonomic neuropathy, plasma immunoreactive ANH (IR-ANH) levels were measured in 23 patients with insulin-dependent diabetes mellitus, 12 of whom had definite cardiac autonomic neuropathy determined by noninvasive maneuvers. Levels were also measured in 31 healthy control subjects. Whereas only one of the 11 diabetics without cardiac autonomic neuropathy had elevated IR-ANH levels, four of the 12 diabetics with cardiac autonomic neuropathy had elevated IR-ANH levels (P = 0.03 compared to control subjects). 24-h urinary sodium excetion was not different among the groups. There was no significant correlation between IR-ANH levels and diabetes control and any of the parameters of autonomic nervous system activity nor between IR-ANH levels and plasma norepinephrine or epinephrine levels. Furthermore, no relationship was observed in the diabetic subjects between IR-ANH levels and left ventricular ejection fraction determined by radionuclide ventriculography. Thus, elevated IR-ANH levels occur with greater frequency in diabetic patients with autonomic neuropathy. These elevations do not appear to be due to alterations in dietary sodium intake or left ventricular dysfunction.  相似文献   

11.
Banks, W. A., J. B. Jaspan and A. J. Kastin. Effect of diabetes mellitus on the permeability of the blood–brain barrier to insulin. Peptides 18(10) 1577–1584, 1997.—Insulin derived from the peripheral circulation has been shown to exert various effects on the brain due to its ability to cross the blood–brain barrier (BBB). The relation between diabetes mellitus and insulin has been extensively studied for peripheral tissues but not for central nervous system tissues. We examined the effects that streptozotocin- or alloxan-induced diabetes have on the transport of insulin across the murine BBB. We used multiple-time regression analysis to measure the unidirectional influx rate constant (Ki) and vascular association (Vi) of intravenously injected, radioactively labeled human insulin (I-Ins). Treatment with streptozotocin induced an enhancement of both the Ki and Vi of I-Ins that correlated with the onset of diabetes. Brain perfusion showed that the enhanced uptake was not due to altered vascular space or levels of insulin in the serum. Alloxan enhanced Ki and Vi after 5 days but the early phase of diabetes was associated with a decreased Ki. Hyperglycemia induced by the intraperitoneal injection of glucose elevated the Vi but abolished the Ki. Furthermore, altered I-Ins uptake by brain was not associated with changes in brain or body weight. These results show that there is an increased uptake of I-Ins by the brain in the diabetic state that is not due to acute changes in the serum levels of glucose or insulin, altered vascular space, or catabolic events. Chronic changes in levels of glucose, insulin or other hormone or neuroendocrine agents are likely to underlie the altered rate of transport of insulin across the BBB of diabetic mice.  相似文献   

12.
Animals with unilateral lesions of the nigrostrial system rotate when administered dopaminergic agents. The same agents also induce rotation, though at lower rates, in normal animals. Despite the apparent simplicity of the rotatory response, variations in methodology among studies may alter the kind and/or magnitude of rotation data obtained. In some cases, due to insufficient control procedures, inaccurate or erroneous interpretations may be reached. The importance of considering several testing parameters is discussed. It is concluded that rotation is primarily due to asymmetric dopaminergic nigrostriatal function, although other pathways mediated by norepinephrine, serotonin, acetylcholine and GABA appear to have modulatory roles.  相似文献   

13.
The dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) gene encodes a protein kinase known to play a critical role in neurodevelopment. Mice with one functional copy of Dyrk1A (Dyrk1A(+/-)) display a marked hypoactivity and altered gait dynamics in basal conditions and in novel environments. Dopamine (DA) is a key neurotransmitter in motor behavior and genetic deletion of certain genes directly related to the dopaminergic system has a strong impact on motor activity. We have studied the effects of reduced Dyrk1A expression on the function of the nigrostriatal dopaminergic system. To characterize the dopaminergic system in DYRK1A(+/-) mice, we have used behavioral, pharmacological, histological, neurochemical and neuroimaging (microPET) techniques in a multidisciplinary approach. Dyrk1A(+/-) mice exhibited decreased striatal DA levels, reduced number of DA neurons in the substantia nigra pars compacta, as well as altered behavioral responses to dopaminergic agents. Moreover, microdialysis experiments revealed attenuated striatal DA release and positron emission tomography scan display reduced forebrain activation when challenged with amphetamine, in Dyrk1A(+/-) compared with wild-type mice. These data indicate that Dyrk1A is essential for a proper function of nigrostriatal dopaminergic neurons and suggest that Dyrk1A(+/-) mice can be used to study the pathogenesis of motor disorders involving dopaminergic dysfunction.  相似文献   

14.
The normal complement of neurotransmitters in noradrenergic neurons was altered by expressing the structural gene for the enzyme phenylethanolamine-N-methyltransferase (PNMT) under the control of the dopamine-beta-hydroxylase gene promoter in transgenic mice. This resulted in accumulation of large amounts of epinephrine in neurons of the sympathetic nervous system (SNS) and central nervous system (CNS) but did not reduce norepinephrine levels. Adrenalectomy reduced PNMT levels in the SNS and CNS, suggesting that the transgene is positively regulated by adrenal steroids. Epinephrine levels were unaffected by this treatment in the CNS, suggesting that PNMT is not rate limiting for epinephrine synthesis. However, catecholamines were elevated in a sympathetic ganglion and a target tissue of the SNS, perhaps due to up-regulation of tyrosine hydroxylase in response to adrenalectomy. These transgenic mice also reveal a marked difference in the ability of chromaffin cells and neurons to synthesize epinephrine.  相似文献   

15.
Pregnancy in the diabetic woman has long been associated with an increased risk of congenital malformation in the offspring. However, little is known about the effects of maternal diabetes on development of the central nervous system. To begin to gain an understanding of this problem, diabetes was induced in adult female Sprague-Dawley rats by injection with streptozotocin. Only animals with serum glucose levels greater than 200 mg/dl were used. Diabetic and control females were bred, and all newborn pups were cross-fostered to nondiabetic mothers. At 60 days of age, pups were tested in an elevated plus-maze to assess differences in emotionality and anxiety. There were no significant differences between offspring of diabetic dams and controls on this measure. All pups were then housed individually, put on food restriction, and maintained at 85% of their ad libitum weight. They were then trained in a Lashley III maze, which assesses learning and retention capability. The female offspring of diabetic dams performed poorer than controls, a finding that was supported by inhibitory avoidance data from a separate group of animals. All animals were then trained in a radial-arm maze. Results failed to find differences between experimental and control animals. It was concluded that the diabetic intrauterine environment has gender-specific effects on central nervous system development.  相似文献   

16.
Y Kabayama  Y Kato  K Tojo  A Shimatsu  H Ohta  H Imura 《Life sciences》1985,36(13):1287-1294
Intracerebroventricular (icv) injection of DN1417 (0.3, 3 and 30 nmol/rat), a TRH analog, resulted in a dose-related increase in plasma glucose, epinephrine and norepinephrine levels in conscious male rats. The effects of DN1417 were more potent and longer-lasting than those of TRH on a molar basis. Intravenous injection of DN1417 (30 nmol/rat) did not change plasma glucose, epinephrine and norepinephrine levels. Pretreatment with hexamethonium (1.5 mg/100 g body wt, iv, 2 min before) inhibited plasma glucose, epinephrine and norepinephrine responses to DN1417 (3 nmol/rat, icv). DN1417 did not change plasma glucose, epinephrine and norepinephrine levels in rats after total adrenalectomy. In the animals pretreated with cysteamine (30 mg/100 g body wt, sc, 4 h before), basal plasma glucose, epinephrine and norepinephrine levels were raised, and exaggerated responses of plasma glucose, epinephrine and norepinephrine to DN1417 (3 nmol/rat, icv) were obtained. These results indicate that DN1417 has a potent and long-lasting effect in the central nervous system in stimulating the secretion of catecholamines through the autonomic nervous system, which is associated with an elevation of plasma glucose and that endogenous hypothalamic somatostatin may inhibit the action of DN1417.  相似文献   

17.
Sympathetic vasoconstriction is susceptible to diabetes, but contributions made by purinergic neurotransmission in this state have not been investigated. We aimed to evaluate sympathetic vasoconstriction contributions by ATP and norepinephrine in the tail artery from streptozotocin-diabetic rats by using isometric vascular rings. Tail arteries were isolated from rats made diabetic 3 mo earlier with streptozotocin (diabetic group), age-matched nondiabetic rats (nondiabetic injected), age-matched untreated animals (noninjected normal), and age-matched untreated animals in high glucose control Krebs solution (high glucose control). Responses to KCl (60 mM) or nerve stimulus trains of 1-100 impulses were identical in all groups. Electrical stimulation produced progressively greater contractions with increasing impulse numbers. These were partially reduced by suramin (100 microM, P2 antagonist), NF-279 (1 microM, P2X blocker), and phentolamine (2 microM, alpha-blocker). For purinergic antagonists, blockade was greater in diabetic vessels compared with that in others. No differential effect could be detected for phentolamine between groups. Bath-applied ATP (1 nM-1 mM) and norepinephrine (0.1 nM-100 microM) showed increased potency with diabetic group vessels. Desipramine (1 microM, norepinephrine reuptake inhibitor) potentiated neurally evoked responses in all groups equally and increased sensitivity to exogenous norepinephrine in a similar fashion. Histochemical labeling of sympathetic nerves with neuronal marker protein PGP-9.5 and a sympathetic nerve-specific antibody for tyrosine hydroxylase showed no reduction in diabetic innervation density. We demonstrate, for the first time, changes in contributions of ATP and norepinephrine in sympathetic responses of rat tail artery in diabetes, which cannot be accounted for by axonal degeneration or by changes in norepinephrine reuptake.  相似文献   

18.
We previously observed that administration of tyrosine to rats or humans elevated urinary dopamine, norepinephrine and epinephrine levels. The present studies examine the effects on these urinary catecholamines of varying the ratio of protein to carbohydrate in the diets.Rats consumed diets containing 0, 18 or 40% protein (76, 58 and 36% carbohydrate respectively) for 8 days. The stress of consuming the protein-free food was associated with a 16% weight reduction, and with significantly lower serum, heart and brain tyrosine levels than those noted in rats eating the 18 or 40% protein diets. Absence of protein from the diet also decreased urinary levels of dopamine and DOPA but increased urinary norepinephrine and epinephrine, probably by increasing sympathoadrenal discharge; it also increased the excretion of DOPA in animals pretreated with carbidopa, a DOPA decarboxylase inhibitor. Carbidopa administration decreased urinary dopamine, norepinephrine and epinephrine as expected; however, among carbidopa-treated rats urinary norepinephrine and epinephrine concentrations were highest for animals consuming the protein-free diet, again suggesting enhanced release of stored catecholamines from sympathoadrenal cells. The changes in urinary catecholamines observed in animals eating the protein-free diet were similar to those seen in rats fasted for 5 days: dopamine levels fell sharply while norepinephrine and epinephrine increased.These data indicate that the effects of varying dietary protein and carbohydrate contents on dopamine secretion from peripheral structures differ from its effects on structures secreting the other two catecholamines. Protein consumption increases dopamine synthesis and release probably by making more of its precursor, tyrosine, available to peripheral dopamine-producing cells; it decreases urinary norepinephrine and epinephrine compared with that seen in protein-deprived animals, probably by diminishing the firing of sympathetic neurons and adrenal chromaffin cells.  相似文献   

19.
The corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical [Glu27]-corticotropin-releasing factor 9-41 (CRF 9-41) has been assessed for its ability to modify plasma concentrations of epinephrine and norepinephrine, mean arterial pressure (MAP) and heart rate (HR). Basal concentrations of epinephrine and norepinephrine were not altered by lateral ventricular (icv) administration of CRF 9-41. However, this CRF antagonist, given icv, attenuated the rise of plasma epinephrine following 30% hemorrhage and insulin-induced hypoglycemia. CRF 9-41 did not alter the increased plasma concentrations of epinephrine or norepinephrine following icv administration of bombesin. Icv administration of CRF 9-41 blunted CRF-induced elevation of MAP and HR in normal animals. However, this CRF antagonist did not modify the MAP or HR in spontaneously hypertensive rats. Similarly, this CRF antagonist administered to Sprague-Dawley rats neither prevented the rise of MAP or HR following electrical stimulation of the central nucleus of the amygdala, nor did it affect nitroprusside-induced hypotension and tachycardia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号