首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scope for genetic manipulation of mineral acquisition in chickpea   总被引:1,自引:1,他引:0  
Nutrient acquisition in chickpea needs to be efficient, because it is mainly grown as a post-rainy season, rainfed crop, and generally on soils inferior in physical characteristics and poor in fertility. Nutrient deficiencies have been reported to cause yield losses of varying magnitude in chickpea, e.g., 22–50% due to iron (Fe), around 10% due to sub-optimal nodulation and hence nitrogen (N) deficiency, 29–45% due to phosphorus (P), up to 100% due to boron (B), and 16-30% due to sulphur (S). Yield losses due to salinity are equally large but are difficult to estimate because of its heterogeneous occurrence. In chickpea, genotypic differences in morpho-physiological (including root size) and functional (exudates) root traits, and in nodulation capacity for increased nitrogen fixation have been identified. Genotypic differences in response to application of Fe, B and zinc (Zn) have also been found among chickpea genotypes. A drought tolerant chickpea genotype ICC 4958, which has a relatively large root system, acquired more P than other genotypes during the vegetative period in a pot experiment at ICRISAT. The recent thrust on identifying QTLs for root size should facilitate progress in incorporating useful root traits through marker assisted selection in desirable agronomic backgrounds. Selection for nodulation capacity in released cultivars has resulted in high nodulating chickpea genotypes that produced 10% higher yield than the control varieties. Information on targeted crop improvement for higher nutrient-use efficiency for P, S, Zn, B and Fe is not readily available. Methods to screen for tolerance to salinity are available, but sufficiently high levels of tolerance have not yet been found in germplasm or wild relatives of chickpea to warrant breeding for salinity tolerance. Use of alternative approaches, such as mutation to generate genetic diversity or introgression of alien genes from other crops (transgenic) are thus required, and these remain long-term objectives.  相似文献   

2.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

3.
The removal of sodium salts from saline soils by salt tolerant crops, as alternative for costly chemical amendments, has emerged as an efficient low cost technology. Lysimeter experiments were carried out on a highly saline sodic soil (ECe = 65.3 dS m(-1), ESP = 27.4, CEC = 47.9 cmole+ kg(-1), and pH = 7.7) and irrigated with canal water (EC = 2.2 dSm(-1), SAR = 4.8) to investigate reclamation efficiency under four different treatments: control (no crop and no gypsum application) (C), gypsum application equivalent to 100% gypsum requirement (G100), planting sea orach (Atriplex halimus) as phytoremediation crop (Cr), planting sea orach with gypsum application equivalent to 50% gypsum requirement (CrG50). Soil salinity (ECe) and exchangeable sodium percentage (ESP) were significantly reduced compared to the control. Average ESP and ECe (dS m(-1)) in the top layer were 9.1, 5.8 (control), 4.8, 3.7 (Cr), 3.3, 3.9 (CrG50), and 3.8, 3.1 (G100), respectively. Atriplex halimus can be recommended as phytoremediation crop to reclaim highly saline sodic clay loam soils.  相似文献   

4.
Fifteen genotypes of faba bean (Vicia faba L.) were inoculated with salt-tolerant Rhizobium leguminosarum biovar. viciae strain GRA 19 in solution culture with 0 (control) and 75 mM NaCl added immediately after transplanting. Genotypes varied in their tolerance of high levels of NaCl. Physiological parameters (dry weight of shoot and root, number and dry weight of nodules) were not affected by salinity in lines VF46, VF64 and VF112. Faba bean line VF60 was sensitive to salt stress. Host tolearance appeared to be a major requisite for nodulation and N2 fixation under salt stress. Tolerant line VF112 sustained nitrogen fixation under saline conditions. Activity of the ammonium assimilation enzymes glutamine synthetase and glutamate synthase, and soluble protein content, were reduced by salinity in all genotypes tested. Evidence presented here suggests a need to select faba bean genotypes that are tolerant to salt stress.Abbreviations ARA acetylene reduction activity - NADH-GOGAT NADH-dependent glutamate synthase - GS glutamine synthetase  相似文献   

5.
Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m ECe. In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl-concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.  相似文献   

6.
The effect of saline irrigation (ECiw 6 dS m?1 and 9 dS m?1) on the roots of Cicer arietinum L. genotypes was examined at morpho-physiological, biochemical and molecular levels. Reduction in root growth due to salinity was observed, but less effect was seen on the roots of genotypes KWR 108, ICCV 10, CSG 8962, and S7 as compared to the other genotypes. Cell turgor was maintained in tolerant genotypes through optimum water relations and osmoprotectants (proline and total soluble sugars) than the sensitive cultivars. Salinity caused oxidative stress as increased hydrogen peroxide and malondialdehyde were noticed, where low accumulation was observed in tolerant genotypes due to the higher activity of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and peroxidase). Na+/K+ ratio increased, but more increment was reported in sensitive cultivars. Gene expression studies depicted that genes encoding pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase got upregulated and that of proline dehydrogenase was downregulated and more fold change with respect to control was in the salt tolerant check CSG 8962 and the genotype KWR 108. Higher expression of the genes encoding reactive oxygen species scavenging enzymes namely, superoxide dismutase, catalase, peroxidase, and those involved in the ascorbate–glutathione cycle was noticed in KWR 108 and CSG 8962 than ICC 4463. Enhanced expression of sodium transporter HKT1 due to salinity can be correlated with ion homeostasis maintenance. Cumulative effects of osmolytes, enzymatic antioxidants and maintaining ion homeostasis in root enable chickpea plants to survive in saline environments.  相似文献   

7.
A glasshouse experiment was conducted to investigate the effect of soil pH on chickpea (Cicer arietinum) tolerance to isoxaflutole applied pre-emergence at 0, 75 (recommended rate) and 300 g a.i. ha−1. For this study, the variables examined were two desi chickpea genotypes (97039-1275 as a tolerant line and 91025-3021 as a sensitive line) and four pH levels (5.1, 6.9, 8.1, and 8.9). The results demonstrated differential tolerances among chickpea genotypes to isoxaflutole at different rates and soil pH levels. Isoxaflutole applied pre-emergence resulted in increased phytotoxicity with increases in soil pH and herbicide rate. Even the most tolerant chickpea genotype was damaged when exposed to higher pH and herbicide rates, as indicated by increased leaf chlorosis and significant reductions in plant height, and shoot and root dry weight. The effects were more severe with the sensitive genotype. The susceptibility of chickpea to this herbicide depends on genotype and soil pH which should be taken into account in breeding new lines, and in the agronomy of chickpea production.  相似文献   

8.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

9.
Wang  D.  Shannon  M. C. 《Plant and Soil》1999,214(1-2):117-124
Soybean is an important agricultural crop and has, among its genotypes, a relatively wide variation in salt tolerance. As measured by vegetative growth and yield, however, the achievement or failure of a high emergence ratio and seedling establishment in saline soils can have significant economic implications in areas where soil salinity is a potential problem for soybean. This study was conducted to determine the effects of salinity, variety and maturation rate on soybean emergence and seedling growth. Included in the study were the variety ‘Manokin’; four near-isogenic sibling lines of the variety ‘Lee’ belonging to maturity groups IV, V, VI and VII; and the variety ‘Essex’ and two of its near-isogenic related lines representing maturity groups V, VI and VII, respectively. Field plots were salinized with sodium chloride and calcium chloride salts prior to planting. The soybeans were irrigated with furrow irrigation which redistributed the salts towards the tail ends of the field plots. Elevated soil salinity near the tail ends of the field significantly reduced soybean emergence rate, shoot height and root length. No significant reduction was found for emergence or seedling growth of variety ‘Manokin’ when the electrical conductivity of soil solution extract (ECe) was less than 3 dS m−1. Soybean emergence and seedling growth was significantly reduced when soil ECe reached about 11 dS m−1. Maturity groups V and VII of variety ‘Lee’ or V and VI of ‘Essex’ appeared to be more sensitive to salinity stress than other maturity groups. Salt tolerance of different genotypes and maturity groups should be considered, among other limiting factors, in minimizing salinity effects on soybean growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
This paper examines the importance of salt tolerance of host cultivars, Bradyrhizobium strains, and host-Bradyrhizobium combinations on the symbiotic nitrogen fixation potential of soybean under NaCl and KCl salt stress. Plants were grown in a soil medium, and the experiments were conducted under controlled environment growth room conditions. Bradyrhizobium growth was examined in yeast-mannitol broth andB. japonicum strains tolerant of NaCl and KCl (80 mM) stress were identified. Soybean cultivar Williams, which was sensitive to salt stress, performed poorly both in growth and symbiotic nitrogen fixation, irrespective of whether it was matched with a tolerant or sensitive Bradyrhizobium strain. Tolerant cultivar Manchu sustained nodulation and nitrogen fixation, irrespective of whether it was matched with a tolerant or sensitive Bradyrhizobium strain. Evidence presented here suggests a need, first to select soybean cultivars that are tolerant to salt stress, and then to match them with tolerant and effective Bradyrhizobium strains.  相似文献   

11.
12.
Summary An incubation study on mineralization and gaseous losses of nitrogen was conducted on three soils with increasing levels (1.1 to 50 mmhos/cm) of salinity and two levels of urea and ammonium sulphate upto 6 weeks. Mineralization of nitrogen increased with time and decreased with the increase of salinity. It was more from ammonium sulphate than urea, and relatively more from the lower dose. The gaseous losses of NH4-N increased with salinity. About 35±5 per cent of added N was lost in the gaseous form at maximum (ECe=45 to 50 mmhos/cm) salinity and losses were more from light than heavier soils. Salinity and pH, both were correlated negatively with the N mineralisation and positively with the gaseous losses of ammonia in these salt-affected soils. re]19751105  相似文献   

13.
Arbuscular mycorrhizal (AM) fungi exist widely in natural ecosystems as well as in salt-affected soils and are considered suitable candidates for bio-amelioration of saline soils. Plants respond to salinity by accumulating sugars and other low-molecular-weight compatible solutes. One such compound is trehalose, which has been found to play an important role as a stress protectant. The aim of the present investigation was to study interactions between an AM fungus and salinity stress on growth, nitrogen fixation, and trehalose metabolism in Cajanus cajan (L.) Millsp. (pigeonpea). Two genotypes [Sel 85N (salt-tolerant) and ICP 13997 (salt-sensitive)] were subjected to saline treatments with and without mycorrhizal inoculations. Salinity reduced plant biomass (shoot and root) in both genotypes and resulted in a decline in shoot-to-root ratio (SRR); however, a smaller decline was observed in Sel 85N than in ICP 13997. AM colonization was reduced with increasing salinity levels but mycorrhizal responsiveness (MR) increased. Genotypic variability in nitrogen fixation and trehalose metabolism in response to salinity and mycorrhization was observed. An increment in nodule number was accompanied by a reduction in dry mass. Subsequently, nodular activity (leghemoglobin, acetylene-reduction activity [ARA], nitrogen content) was reduced under soil salinity, which was more profound in ICP 13997 than in Sel 85N. The symbiotic association with Glomus mosseae led to significant improvement in plant dry mass and nitrogen-fixing potential of nodules under salt stress. Salinity led to an increase in trehalose-6-P synthetase (TPS) and trehalose-6-P phosphatase (TPP) activities resulting in increased trehalose content in nodules, which was accompanied by inhibition of trehalose catabolism (trehalase activity). AM plants had lower trehalase activity under saline and nonsaline conditions. Thus, a symbiotic relationship between plant roots and G. mosseae might have resulted in salinity tolerance in a genotype-dependent manner.  相似文献   

14.
The understanding of crop physiological responses to salinity stress is of paramount importance for selection of genotypes with improved tolerance to this stress. Maize (Zea mays L.) hybrids Pioneer 32B33 and Dekalb 979 were grown in pots and subjected to three levels of salinity under four nitrogen levels to determine the role of nitrogen under saline conditions. Salinity stress effects on gas exchange characteristics and chlorophyll fluorescence of maize hybrids were evaluated under semi-controlled conditions. Under salinity stress, the changes in the net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were similarly directed: all decreased and were lower than in control at the higher salinity level (10 dS/m). Water use efficiency was increased with increasing salinity since transpiration was stronger depressed by salt than photosynthesis. Plants subjected to the lower level of salinity did not differ from control in tested characteristics. Nitrogen application ameliorated the effects of salinity.  相似文献   

15.
Saline water resources are abundant in the coastal areas of south China. Most of these resources still have not been effectively utilized. A 3-year study on the effects of saline water irrigation on tomato yield, quality and blossom-end rot (BER) was conducted at different lower limits of soil matric potential (-10 kPa, -20 kPa, -30 kPa, -40 kPa and -50 kPa). Saline water differing in electrical conductivity (EC) (3 dS/m, 4 dS/m, 4.5 dS/m, 5 dS/m and 5.5 dS/m) was supplied to the plant after the seedling establishment. In all three years, irrigation water with 5.5 dS/m salinity reduced the maximum leaf area index (LAIm) and chlorophyll content the most significantly when compared with other salinity treatments. However, compared with the control treatment (CK), a slight increase in LAIm and chlorophyll content was observed with 3~4 dS/m salinity. Saline water improved tomato quality, including fruit density, soluble solid, total acid, vitamin C and the sugar-acid ratio. There was a positive relationship between the overall tomato quality and salinity of irrigation water, as analyzed by principal component analysis (PCA). The tomato yield decreased with increased salinity. The 5.5 dS/m treatment reduced the tomato yield (Yt) by 22.4~31.1%, 12.6~28.0% and 11.7~27.3%, respectively in 2012, 2013 and 2014, compared with CK. Moreover, a significant (P≤0.01) coupling effect of salinity and soil matric potential on Yt was detected. Saline water caused Yt to increase more markedly when the lower limit of soil matric potential was controlled at a relatively lower level. The critical salinity level that produced significant increases in the BERi was 3 dS/m~4 dS/m. Following the increase in BERi under saline water irrigation, marketable tomato yield (Ym) decreased by 8.9%~33.8% in 2012, 5.1%~30.4% in 2013 and 10.1%~32.3% in 2014 compared with CK. In terms of maintaining the Yt and Ym, the salinity of irrigation water should be controlled under 4 dS/m, and the lower limit of soil matric potential should be greater than -20 kPa.  相似文献   

16.
Abiotic stresses are among the major limiting factors for plant growth and crop productivity. Among these, salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions. Cultivation of salt tolerant crop genotypes is one of the imperative approaches to meet the food demand for increasing population. The current experiment was carried out to access the performance of different rice genotypes under salinity stress and Zinc (Zn) sources. Four rice genotypes were grown in a pot experiment and were exposed to salinity stress (7 dS m−1), and Zn (15 mg kg−1 soil) was applied from two sources, ZnSO4 and Zn-EDTA. A control of both salinity and Zn was kept for comparison. Results showed that based on the biomass accumulation and K+/Na+ ratio, KSK-133 and BAS-198 emerged as salt tolerant and salt sensitive, respectively. Similarly, based on the Zn concentration, BAS-2000 was reported as Zn-in-efficient while IR-6 was a Zn-efficient genotype. Our results also revealed that plant growth, relative water content (RWC), physiological attributes including chlorophyll contents, ionic concentrations in straw and grains of all rice genotypes were decreased under salinity stress. However, salt tolerant and Zn-in-efficient rice genotypes showed significantly higher shoot K+ and Zn concentrations under saline conditions. Zinc application significantly alleviates the harmful effects of salinity by improving morpho-physiological attributes and enhancing antioxidant enzyme activities, and the uptake of K and Zn. The beneficial effect of Zn was more pronounced in salt-tolerant and Zn in-efficient rice genotypes as compared with salt-sensitive and Zn-efficient genotypes. In sum, our results confirmed that Zn application increased overall plant’s performance under saline conditions, particularly in Zn in-efficient and tolerant genotypes as compared with salt-sensitive and Zn efficient rice genotypes.  相似文献   

17.
Chickpea is mostly grown on stored soil moisture, and deep/profuse rooting has been hypothesized for almost three decades to be critical for improving chickpea tolerance to terminal drought. However, temporal patterns of water use that leave water available for reproduction and grain filling could be equally critical. Therefore, variation in water use pattern and root depth/density were measured, and their relationships to yield tested under fully irrigated and terminal drought stress, using lysimeters that provided soil volumes equivalent to field conditions. Twenty chickpea genotypes having similar plant phenology but contrasting for a field-derived terminal drought-tolerance index based on yield were used. The pattern of water extraction clearly discriminated tolerant and sensitive genotypes. Tolerant genotypes had a lower water uptake and a lower index of stomatal conductance at the vegetative stage than sensitive ones, while tolerant genotypes extracted more water than sensitive genotypes after flowering. The magnitude of the variation in root growth components (depth, length density, RLD, dry weight, RDW) did not distinguish tolerant from sensitive genotypes. The seed yield was not significantly correlated with the root length density (RLD) in any soil layers, whereas seed yield was both negatively related to water uptake between 23-38 DAS, and positively related to water uptake between 48-61 DAS. Under these conditions of terminal drought, the most critical component of tolerance in chickpea was the conservative use of water early in the cropping cycle, explained partly by a lower canopy conductance, which resulted in more water available in the soil profile during reproduction leading to higher reproductive success.  相似文献   

18.
In order to study the effect of salt stress on the Rhizobium-common bean symbiosis, we investigated the response of both partners, separately and in symbiosis. The comparison of the behaviour of five cultivars of Phaseolus vulgaris differing in seed colour, growing on nitrates and different concentrations of NaCl, showed genotypic variation with respect to salt tolerance. Coco Blanc was the most sensitive cultivar, whereas SMV 29-21 was the most tolerant one. At the Rhizobium level, two strains previously selected for their salt tolerance were used: Rhizobium tropici strain RP163 and Rhizobium giardinii strain RP161. Their relative growth was moderately decreased at 250mM NaCl, but they were able to grow at a low rate in the presence of 342 mM NaCl. Their viability at the minimal inhibitory concentration was slightly affected. The effect of salinity on Rhizobium-plant association was studied by using the tolerant variety SMV 29-21 and the sensitive one Coco Blanc inoculated separately with both strains. In the absence of salinity, the strains induced a significantly higher number of nodules on the roots of the cultivar SMV 29-21 compared to those of Coco Blanc. Concerning effectiveness, both strains were similarly effective with SMV 29-21, but not with Coco Blanc. In the presence of salinity, Coco Blanc was more severely affected when associated with RP163 than with RP161. Salinity affected the nodulation development more than it affected the infection steps. Neither of the two strains was able to nodulate SMV 29-21 under saline conditions, in spite of the fact that this was considered the most salt-tolerant variety. The unsuccessful nodulation of SMV 29-21 could be related to the inhibition by salt of one or more steps of the early events of the infection process. In conclusion, N-fixing plants were found to be more sensitive to salt stress than those depending on mineral nitrogen. Evidence presented here suggests that a best symbiotic N2 fixation under salinity conditions could be achieved if both symbiotic partners, as well as the different steps of their interaction (early events, nodule formation, activity, etc.), are all tolerant to this stress.  相似文献   

19.
Royo  A.  Aragüés  R. 《Plant and Soil》1999,209(1):9-20
Evaluation of the salt tolerance of crop cultivars under field conditions is greatly complicated by the typical temporal and spatial variability of soil salinity. We obtained the grain yield – salinity response functions of 124 barley genotypes by growing them in ten salinity treatments imposed by a Triple Line Source Sprinkler (TLS) system during five consecutive years. Additional objectives were to ascertain the consistency and reproducibility over years of these functions, to quantify the deleterious effects of saline sprinkling irrigations, and to assess correlations between salinity tolerance and leaf sap salt concentration. The consistency and reproducibility of the response functions within and between years were adequate (only 8% of the response functions were discarded for statistical reasons). The Y m (grain yield without salinity) and the EC50 (the EC e that reduces yield by 50%) estimates were not correlated (P > 0.05) suggesting that the most productive genotypes were not necessarily less salinity tolerant. Y m was positively and significantly (P < 0.01) correlated with Y6 and Y12 (fitted grain yields at EC e values of 6 dS m-1, and 12 dS m-1, respectively), indicating that it is a useful statistic in the selection of barley genotypes most productive under medium and high salinities. Foliar salt uptake due to saline sprinkling irrigations decreased the EC50 by around 50% as compared with the salinity tolerance obtained with surface irrigation systems. No consistent relationships were found between either Y m or EC50 and the leaf sap osmotic potential, Cl, Ca, Na and K concentrations. They could not therefore be used in screening for salinity tolerance of barley. On the basis of the evidence from the present study, Y m is the best statistic for predicting the most productive barley genotypes in salt-affected soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Peanuts (Arachis hypogea L.) are often grown on sandy soils and drought stress can be a major limitation on yield. In particular, loss in nitrogen fixation activity associated with soil drying might be limiting due to the need for high nitrogen amounts in both vegetative tissues and seeds of peanut. This study examined the response of nitrogen fixation of intact plants of seventeen peanut genotypes when subjected to soil drying in pots over approximately a 2-wk period. A large range in the sensitivity of nitrogen fixation to soil drying was observed among the seventeen genotypes. Genotype ICGV86015, in particular, was found to have nitrogen fixation that was especially tolerant of soil drying. Significant positive (P?<?0.0001) correlation was found between the soil water content at which nitrogen fixation began decreasing and the amino acid concentration in the leaves of severely stressed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号