首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28 degrees C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCl, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7- and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7 beta-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 7 beta-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCl, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.  相似文献   

2.
转化石胆酸为熊去氧胆酸的菌种筛选和产物鉴定   总被引:2,自引:1,他引:2  
孙黎  法幼华 《微生物学报》1995,35(3):197-203
筛选到一株泡木贼镰刀菌(Fusarium equiseti)90-9菌株,它能转化石胆酸(Lithocholic acid)为熊去氧胆酸(Ursodeoxycholic acid).该菌转化0.1%(W/V)石胆酸96h,熊去氧胆酸重量收率为38.1%.经各项理化性质,包括熔点、比旋值、红外光谱、核磁共振谱、质谱和元素分析等项鉴定,证明产物为熊去氧胆酸.  相似文献   

3.
Fusarium equiseti M41 converts lithocholic acid to ursodeoxycholic acid. Adsorption of lithocholic acid particles to mycelia of F. equiseti M41 is essential in the conversion of lithocholic acid to ursodeoxycholic acid. Production of ursodeoxycholic acid was negligible when particles of lithocholic acid were absent. As the concentration of lithocholic acid particles increased, both the amount of mycelium-bound lithocholic acid and the production of ursodeoxycholic acid increased hyperbolically (K1/2 = 1.9 g/liter and Kmapparent = 1.9 g/liter. A fluorescent lithocholic acid derivative was used to confirm that insoluble particles of lithocholic acid attached to the surface of the mycelia. The hydrophobic nature of this binding was estimated from the close relationship observed between the hydrophobicity of bile acids and their binding capacity to the mycelia. By repeated washing with 30% dimethyl sulfoxide, two binding modes of lithocholic acid were distinguished, i.e., surface binding (59% of bound lithocholic acid) and tight binding (41% of bound lithocholic acid). From the amount of tightly bound lithocholic acid, the intracellular concentration of lithocholic acid was calculated to be 1,433-fold higher than its saturating concentration in the reaction mixture, thus promoting effective conversion to ursodeoxycholic acid in the mycelia. Several lines of evidence indicated that glycoproteins of the cell wall participated in the binding of lithocholic acid.  相似文献   

4.
Guinea pig gallbladder bile contains chenodeoxycholic acid (62 +/- 5%), ursodeoxycholic acid (8 +/- 5%), and 7-ketolithocholic acid (30 +/- 5%). All three bile acids became labeled to the same specific activity within 30 min after [3H]cholesterol was injected into bile fistula guinea pigs. When a mixture of [3H]ursodeoxycholic acid and [14C]chenodeoxycholic acid was infused into another bile fistula guinea pig, little 3H could be detected in either chenodeoxycholic acid or 7-ketolithocholic acid. But, 14C was efficiently incorporated into ursodeoxycholic and 7-ketolithocholic acids. Monohydroxylated bile acids make up 51% and ursodeoxycholic acid 38% of fecal bile acids. After 3 weeks of antibiotic therapy, lithocholic acid was reduced to 6% of the total, but ursodeoxycholic acid (5-11%) and 7-ketolithocholic (15-21%) acid persisted in bile. Lathosterol constituted 19% of skin sterols and was detected in the feces of an antibiotic-fed animal. After one bile fistula guinea pig suffered a partial biliary obstruction, ursodeoxycholic and 7-ketolithocholic acids increased to 46% and 22% of total bile acids, respectively. These results demonstrate that chenodeoxycholic acid, ursodeoxycholic acid, and 7-ketolithocholic acid can all be made in the liver of the guinea pig.  相似文献   

5.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

6.
Faecal steroid loss in healthy subjects during short-term treatment with ursodeoxycholic acid has been investigated. The data shows conclusively that lithocholic acid, a known co-mutagen and co-carcinogen is the major bacterial metabolite of ursodeoxycholic acid in the human intestine. Although ursodeoxycholic acid is now the drug of choice for dissolution of cholesterol gallstones, elevation of intestinal lithocholic acid may have long-term repercussions since it has been demonstrated that a high faecal lithocholic acid: deoxycholic acid ratio shows a positive correlation with the incidence of colorectal cancer.  相似文献   

7.
A fungus identified as Fusarium equiseti was isolated from soil and found to carry out 7β-hydroxylation of lithocholic acid to ursodeoxycholic acid (35% yield; 350 mg/liter) in 112 h.  相似文献   

8.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

9.
Cloning, expression, and regulation of lithocholic acid 6 beta-hydroxylase.   总被引:3,自引:0,他引:3  
We have isolated a hamster liver cDNA whose expression is induced upon feeding hamsters with a cholic acid-rich diet. It was identified as a cytochrome P450 family 3 protein, by sequence homology, and named CYP3A10. The activity of CYP3A10 was determined by transient expression of its cDNA in transfected COS cells and was found to hydroxylate lithocholic acid at position 6 beta. CYP3A10 RNA is 50-fold higher in males than in female hamsters. In males, it appears to be regulated by age with expression highest after puberty. Shortly after weaning (28 days), cholic acid feeding of male hamsters elevates the level of message over that of hamsters fed with normal laboratory chow. Females do not exhibit regulation by cholic acid. In hamster liver, murideoxycholic acid, the 6 beta-metabolite of lithocholic acid, is the major hydroxylated product of lithocholic acid. Lithocholic acid 6 beta-hydroxylase (6 beta-hydroxylase) activity is greatly diminished in hamster female liver microsomes as would be expected due to the lack of CYP3A10 mRNA in females. Additionally, male liver microsomal 6 beta-hydroxylase activity was increased by cholic acid feeding, consistent with the cholic acid-mediated induction of its RNA. These results indicate that, in male hamsters, 6 beta-hydroxylation is the major pathway for detoxification of lithocholate and that, likely, CYP3A10 is responsible for that activity.  相似文献   

10.
When citrate was used as a sole source of carbon, citrate uptake by Penicillium simplicissimum increased 267-fold (if glucose-grown mycelium was adapted to citrate) or 1400-fold (if the fungus was grown on citrate) compared to glucose-grown mycelium. Inhibition of macromolecular synthesis prevented this stimulation of citrate uptake. Citrate uptake by glucose-grown mycelium was low (0.0015 nmol min(-1) (mg DW)(-1)) and most probably due to diffusion of undissociated citric acid. Citrate-adapted mycelium had a K(M) of 65 micromol l(-1) and a V(max) of 0.34 nmol min(-1) (mg DW)(-1). In citrate-grown mycelium K(M) was 318 micromol l(-1) and V(max) was 8.5 nmol min(-1) (mg DW)(-1). Citrate uptake was inhibited by sodium azide and uncouplers (TCS, 3,3',4',5-tetrachlorosalicylanilide; FCCP, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone). Because of this we postulate that the induced citrate uptake must be an active transport process. The pH optimum of citrate uptake was between pH 6 and 7. EDTA and Mg2+, Mn2+, Cu2+, Zn2+, Fe2+, Ca2+ only weakly influenced the induced citrate uptake. The properties of citrate uptake by Aspergillus niger and P. simplicissimum are compared.  相似文献   

11.
Chenodeoxycholic and ursodeoxycholic acid are used widely for the treatment of gallstones. A possible drawback to their utility is their conversion to lithocholic acid, which has displayed histotoxicity and mutagenicity. The 7-oleyl esters of cheno- and ursodeoxycholic acid are not degraded by fecal bacteria and may represent safer means of treatment.  相似文献   

12.
The formation of ursodeoxycholic acid from chenodeoxycholic acid and the role of 7-ketolithocholic acid as an intermediate in this biotransformation were studied in vitro in fecal incubations as well as in vivo in the human colon. [24-14C]-Labeled 7-ketolithocholic and chenodeoxycholic acids were studied at various concentrations, and the biotransformation products were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry. There was rapid colonic conversion of 7-ketolithocholic acid to ursodeoxycholic acid and, to a lesser extent, to chenodeoxycholic acid. The reduction of 7-ketolithocholic to ursodeoxycholic acid proceeded significantly faster anaerobically and at acid pH than under aerobic and alkaline conditions. When chenodeoxycholic acid was incubated in vitro or instilled into the colon, various amounts of 7-ketolithocholic and ursodeoxycholic acids were formed. The formation of 7-ketolithocholic acid was favored by alkaline conditions. Isotope dilution studies, in which trace amounts of labeled 7-ketolithocholic acid were incubated with unlabeled chenodeoxycholic acid, indicate 7-ketolithocholic acid to be the major intermediate in the intestinal bacterial conversion of chenodeoxycholic to ursodeoxycholic acid.  相似文献   

13.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

14.
The hydroxylation of lithocholic acid (3 alpha-hydroxy-5 beta-cholanoic acid) by adult male Sprague-Dawley rat liver microsomes supplemented with NADPH was studied. Metabolites were separated by a combination of thin-layer chromatography and high pressure liquid chromatography, both with and without prior methylation and acetylation of the samples. The resulting products were characterized by thin-layer, gas-liquid, and high pressure liquid chromatography by comparison with authentic bile acid standards; final structure determination was by proton nuclear magnetic resonance spectroscopy and by mass spectrometry. The following reaction products were found: 3 alpha, 6 beta-dihydroxy-5 beta-cholanoic acid (80% of total metabolites) and 3 alpha, 6 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 7 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 6 beta,7 beta-trihydroxy-5 beta-cholanoic, and 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acids (less than or equal to 5% each). In addition, one unidentified trihydroxylic bile acid and several minor compounds were present. It is concluded that four different hydroxylation reactions of lithocholic acid, namely the predominant 6 beta as well as the minor 6 alpha, 7 alpha, and 7 beta hydroxylations, are catalyzed by rat hepatic microsomes; 7 beta-hydroxylation may occur only with dihydroxylated bile acids but not with lithocholate itself. The presence of the 6-oxo bile acid can be explained either by direct oxidation of a hydroxyl group by cytochrome P-450, or by the action of microsomal dehydrogenase(s) which could also catalyze the epimerization of hydroxyl groups via their oxidation. The results form the basis of a proposed scheme of the oxidative metabolism of lithocholic acid in rat liver microsomes.  相似文献   

15.
In mammals, unconjugated bile acids formed in the intestine by bacterial deconjugation are reconjugated (N-acylamidated) with taurine or glycine during hepatocyte transport. Activation of the carboxyl group of bile acids to form acyl-adenylates is a likely key intermediate step in bile acid N-acylamidation. To gain more insight into the process of bile acid adenylate formation, we first synthesized the adenylates of five common, natural bile acids (cholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and lithocholic acid), and confirmed their structure by proton NMR. We then investigated adenylate formation by subcellular fractions of rat liver (microsomes, mitochondria, cytosol) using a newly developed LC method for quantifying adenylate formation. The highest activity was observed in the microsomal fraction. The reaction required Mg2+ and its optimum pH was about pH 7.0. In term of maximum velocity (Vmax) and the Michaelis constant (Km), the catalytic efficiency of the enzyme under the conditions used was highest with cholic acid of the bile acids tested. The formation of cholyl-adenylate was strongly inhibited by lithocholic and deoxycholic acid, as well as by palmitic acid; ibuprofen and valproic acid were weak inhibitors. In cholestatic disease, such adenylate formation might lead to subsequent bile acid conjugation with glutathione or proteins.  相似文献   

16.
Two new 6-hydroxylated bile acids, 3 beta, 6 alpha, 12 alpha- and 3 beta, 6 beta, 12 alpha-trihydroxy-5 beta-cholanoic acids, were synthesized from deoxycholic acid. In addition, their C-3 epimers, 3 alpha, 6 alpha, 12 alpha- and 3 alpha, 6 beta, 12 alpha-trihydroxy acids, were prepared by a new route. The principal reactions used were 1) 6 beta-hydroxylation of 3-methoxy-3,5-dienes with m-chloroperbenzoic acid in aqueous dioxane; 2) catalytic hydrogenation of the resulting 6 beta-hydroxy-3-oxo-4-enes to the 6 beta-hydroxy-3-oxo-5 beta compounds with palladium on calcium carbonate catalyst in ethanol; and 3) stereoselective reduction of appropriate 3-oxo derivatives with potassium tri-sec-butylborohydride and tert-butylamine-borane complex. The thin-layer chromatographic, gas-liquid chromatographic, and high performance liquid chromatographic mobilities, and 1H- and 13C-nuclear magnetic resonance spectroscopic data of the four stereoisomers are presented. With this work all the 6-hydroxylated derivatives of lithocholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and cholic acids in the 5 beta series are now known and have been synthesized.  相似文献   

17.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

18.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

19.
N-epsilon-lithocholyl-L-lysine or N-alpha-CBZ-N-epsilon-lithocholyl-L-lysine when incubated overnight at 37 degrees C with 3 K units of clostridial cholanoylaminoacid hydrolase (from Clostridium perfringens ATCC 19574) in the presence of disodium EDTA (0.1 M), beta-mercaptoethanol (0.1 M), and sodium acetate buffer, pH 5.6, released free lithocholic acid. The latter material was isolated by thin-layer chromatography and identified by combined gas-liquid chromatography-mass spectrometry in the full scan and selected-ion mode. In order to maintain its activity, the enzyme was always stored in 1.0-ml aliquots at temperatures below -20 degrees C and each aliquot when thawed was used immediately; any left over enzyme was never reused. Contrary to the observations of Yanagisawa et al. (J. Lipid Res. 1984. 25: 1263-1271) the results of this study reaffirm the validity of the original observations on the enzymatic cleavage of lithocholic acid from tissue-bound form.  相似文献   

20.
Summary Effect of aeration rate and impeller tip speed on mycelium growth and itaconic acid production was investigated in a batch culture of Aspergillus terreus IFO-6365. When impeller tip speed was 94.2 cm/sec at a fixed aeration rate of 0.5 vvm, itaconic acid concentration was 3.6 and 1.6 times higher than those in the impeller tip speed of 62.8 and 125.7 cm/sec, respectively. When an oxygen-enriched air was supplied at a fixed impeller tip speed of 94.2 cm/sec and dissolved oxygen concentration was maintained in the 20–60 % range, both itaconic acid concentration and mycelium growth were not affected by the dissolved oxygen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号